DOI QR코드

DOI QR Code

Dark-field Transmission Electron Microscopy Imaging Technique to Visualize the Local Structure of Two-dimensional Material; Graphene

  • Na, Min Young (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Lee, Seung-Mo (Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery & Materials) ;
  • Kim, Do Hyang (Center for Non-Crystalline Materials, Yonsei University) ;
  • Chang, Hye Jung (Advanced Analysis Center, Korea Institute of Science and Technology)
  • Received : 2015.03.23
  • Accepted : 2015.03.25
  • Published : 2015.03.30

Abstract

Dark field (DF) transmission electron microscopy image has become a popular characterization method for two-dimensional material, graphene, since it can visualize grain structure and multilayer islands, and further provide structural information such as crystal orientation relations, defects, etc. unlike other imaging tools. Here we present microstructure of graphene, particularly, using DF imaging. High-angle grain boundary formation wass observed in heat-treated chemical vapor deposition-grown graphene on the Si substrate using patch-quilted DF imaging processing, which is supposed to occur by strain around multilayer islands. Upon the crystal orientation between layers the multilayer islands were categorized into the oriented one and the twisted one, and their local structure were compared. In addition information from each diffraction spot in selected area diffraction pattern was summarized.

Keywords

References

  1. Abergel D S L, Russell A, and Fal'ko V I (2007) Visibility of a graphene flake on a dielectric substrate. Appl. Phys. Lett. 91, 063125. https://doi.org/10.1063/1.2768625
  2. Alden J S, Tsen A W, Huang P Y, Hovden R, Brown L, Park J, Muller D A, and McEuen P L (2013) Strain solitons and topological defects in bilayer graphene. Proc. Natl. Acad. Sci. 110, 11256-11260. https://doi.org/10.1073/pnas.1309394110
  3. Avetisyan A A, Partoens B, and Peeters F M (2010) Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81, 115432. https://doi.org/10.1103/PhysRevB.81.115432
  4. Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, and Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574-578. https://doi.org/10.1038/nnano.2010.132
  5. Bhaviripudi S, Jia X, Dresselhaus M S, and Kong J (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 10, 4128-4133. https://doi.org/10.1021/nl102355e
  6. Blakea P, Hill E W, Castro Neto A H, Novoselov K S, Jiang D, Yang R, Booth T J, and Geim A K (2007) Making graphene visible. Appl. Phys. Lett. 91, 063124. https://doi.org/10.1063/1.2768624
  7. Brown L, Hovden R, Huang P, Wojcik M, Muller D A, and Park J (2012) Twinning and twisting of tri-and bilayer graphene. Nano Lett. 12, 1609-1615. https://doi.org/10.1021/nl204547v
  8. Cao H, Yu Q, Jauregui L A, Tian J, Wu W, Liu Z, Jalilian R, Benjamin D K, Jiang Z, Bao J, Pei S S, and Chen Y P (2010) Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum hall effect and weak localization. Appl. Phys. Lett. 96, 122106. https://doi.org/10.1063/1.3371684
  9. Castro E, Novoselov K, Morozov S, Peres N, dos Santos J, Nilsson J, Guinea F, Geim A, and Neto A (2007) Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802. https://doi.org/10.1103/PhysRevLett.99.216802
  10. Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, and Geim A K (2009) The electronic properties of graphene. Rev. Mod. Phys. 81, 109-162. https://doi.org/10.1103/RevModPhys.81.109
  11. Cockayne E, Rutter G M, Guisinger N P, Crain J N, First P N, and Stroscio J A (2011) Grain boundary loops in graphene. Phys. Rev. B 83, 195425. https://doi.org/10.1103/PhysRevB.83.195425
  12. Duong D L, Han G H, Lee S M, Gunes F, Kim E S, Kim S T, Kim H, Ta Q H, So K P, Yoon S J, Chae S J, Jo Y W, Park M H, Chae S H, Lim S C, Choi J Y, and Lee Y H (2012) Probing graphene grain boundaries with optical microscopy. Nature 490, 235-239. https://doi.org/10.1038/nature11562
  13. Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, McLeod A S, Dominguez G, Thiemens M, Castro Neto A H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M, and Basov D N (2013) Electronic and plasmonic phenomena at graphene grain boundaries. Nat. Nanotechnol. 8, 821-825. https://doi.org/10.1038/nnano.2013.197
  14. Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, and Geim A K (2006) Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401. https://doi.org/10.1103/PhysRevLett.97.187401
  15. Geim A K (2009) Graphene: status and prospects. Science 324, 1530-1534. https://doi.org/10.1126/science.1158877
  16. Geim A K and Novoselov K S (2007) The rise of graphene. Nat. Mater. 6, 183-191. https://doi.org/10.1038/nmat1849
  17. Grantab R, Shenoy V B, and Ruoff R S (2010) Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330, 946-948. https://doi.org/10.1126/science.1196893
  18. Hashimoto A, Suenaga K, Gloter A, Urita K, and Iijima S (2004) Direct evidence for atomic defects in graphene layers. Nature 430, 870-873. https://doi.org/10.1038/nature02817
  19. Hicks J, Sprinkle M, Shepperd K, Wang F, Tejeda A, Taleb-Ibrahimi A, Bertran F, Le Fevre P, de Heer W A, Berger C, and Conrad E H (2011) Symmetry breaking in commensurate graphene rotational stacking: a comparison of theory and experiment. Phys. Rev. B 83, 205403. https://doi.org/10.1103/PhysRevB.83.205403
  20. Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, and Muller D A (2011) Grains and grain boundaries in singlelayer graphene atomic patchwork quilts. Nature 469, 389-393. https://doi.org/10.1038/nature09718
  21. Kim C J, Brown L, Graham M W, Hovden R, Havener R W, McEuen P L, Muller D A, and Park J (2013) Stacking order dependent second harmonic generation and topological defect in h-BN bilayers. Nano Lett. 13, 5660-5665. https://doi.org/10.1021/nl403328s
  22. Kim D W, Kim Y H, Jeong H S, and Jung H T (2012) Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nat. Nanotechnol. 7, 29-34. https://doi.org/10.1038/nnano.2011.198
  23. Kim J, Cote L J, Kim F, and Huang J (2009) Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc. 132, 260-267.
  24. Kim J, Kim F, and Huang J (2010) Seeing graphite-based sheets. Materials Today 13, 28-38.
  25. Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykko P, and Nieminen R M (2009) Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys. Rev. Lett. 102, 126807. https://doi.org/10.1103/PhysRevLett.102.126807
  26. Lee G H, Cooper R C, An S J, Lee S, van der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W, Kysar J W, and Hone J (2013) High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340, 1073-1076. https://doi.org/10.1126/science.1235126
  27. Lee S, Lee K, and Zhong Z (2010) Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett. 10, 4702-4707. https://doi.org/10.1021/nl1029978
  28. Lee S M, Kim S M, Na M Y, Chang H J, Kim K S, Yu H, Lee H J, and Kim J H (2005 accepted) Materialization of strained CVD-graphene using thermal mismatch. Accepted for publication in Nano Res.
  29. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, and Ruoff R S (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312-1314. https://doi.org/10.1126/science.1171245
  30. Li X, Magnuson C W, Venugopal A, An J, Suk J W, Han B, Borysiak M, Cai W, Velamakanni A, Zhu Y, Fu L, Vogel E M, Voelkl E, Colombo L, and Ruoff R S (2010) Graphene films with large domain size by a twostep chemical vapor deposition process. Nano Lett. 10, 4328-4334. https://doi.org/10.1021/nl101629g
  31. Liu Y and Yakobson B I (2010) Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett. 10, 2178-2183. https://doi.org/10.1021/nl100988r
  32. Lopes dos Santos J M B, Peres N M R, and Castro Neto A H (2007) Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802. https://doi.org/10.1103/PhysRevLett.99.256802
  33. Lui C H, Li Z, Mak K F, Cappelluti E, and Heinz T F (2011) Observation of an electrically tunable band gap in trilayer graphene. Nat. Phys. 7, 944-947. https://doi.org/10.1038/nphys2102
  34. Luican A, Li G, Reina A, Kong J, Nair R, Novoselov K, Geim A, and Andrei E (2011) Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 106, 126802. https://doi.org/10.1103/PhysRevLett.106.126802
  35. Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, and Zamora F (2011) 2D materials: to graphene and beyond. Nanoscale 3, 20-30. https://doi.org/10.1039/C0NR00323A
  36. Mele E J (2010) Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405R. https://doi.org/10.1103/PhysRevB.81.161405
  37. Ni Z H, Wang H M, Kasim J, Fan H M, Yu T, Wu Y H, Feng Y P, and Shen Z X (2007) Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758-2763. https://doi.org/10.1021/nl071254m
  38. Ohta T, Bostwick A, Seyller, T, Horn K, and Rotenberg E (2006) Controlling the electronic structure of bilayer graphene. Science 313, 951-954. https://doi.org/10.1126/science.1130681
  39. Ping J and Fuhrer M S (2012) Layer number and stacking sequence imaging of few-layer graphene by transmission electron microscopy. Nano Lett. 12, 4635-4641. https://doi.org/10.1021/nl301932v
  40. Robertson A W, Bachmatiuk A, Wu Y A, Schaffel F, Rellinghaus B, Buchner B, Rummeli M H, and Warner J H (2011) Atomic structure of interconnected few-layer graphene domains. ACS Nano 5, 6610-6618. https://doi.org/10.1021/nn202051g
  41. Ryu G H, Park H J, Kim N Y, and Lee Z (2012) Atomic resolution imaging of rotated bilayer graphene sheets using a low kV aberrationcorrected transmission electron microscope. Appl. Microsc. 42, 218-222. https://doi.org/10.9729/AM.2012.42.4.218
  42. Shallcross S, Sharma S, Landgraf W, and Pankratov O (2011) Electronic structure of graphene twist stacks. Phys. Rev. B 83, 054502. https://doi.org/10.1103/PhysRevB.83.054502
  43. Shi Y, Wang D, Zhang J, Zhang P, Shi X, and Hao Yue (2014 accepted) Synthesis of Multilayer graphene films on copper by modified chemical vapor deposition. Accepted for publication in Mater. Manuf. Process.
  44. Suarez Morell E, Vargas P, Chico L, and Brey L (2011) Charge redistribution and interlayer coupling in twisted bilayer graphene under electric fields. Phys. Rev. B 84, 195421. https://doi.org/10.1103/PhysRevB.84.195421
  45. van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y M, Lee G H, Heinz T F, Reichman D R, Muller D A, and Hone J C (2013) Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554-561. https://doi.org/10.1038/nmat3633
  46. Yan K, Peng H, Zhou Y, Li H, and Liu Z (2011) Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 11, 1106-1110. https://doi.org/10.1021/nl104000b
  47. Yazyev O V and Louie S G (2010) Electronic transport in polycrystalline graphene. Nat. Mater. 9, 806-809. https://doi.org/10.1038/nmat2830
  48. Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, and Wang, F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820-823. https://doi.org/10.1038/nature08105