Browse > Article
http://dx.doi.org/10.9729/AM.2015.45.1.23

Dark-field Transmission Electron Microscopy Imaging Technique to Visualize the Local Structure of Two-dimensional Material; Graphene  

Na, Min Young (Advanced Analysis Center, Korea Institute of Science and Technology)
Lee, Seung-Mo (Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery & Materials)
Kim, Do Hyang (Center for Non-Crystalline Materials, Yonsei University)
Chang, Hye Jung (Advanced Analysis Center, Korea Institute of Science and Technology)
Publication Information
Applied Microscopy / v.45, no.1, 2015 , pp. 23-31 More about this Journal
Abstract
Dark field (DF) transmission electron microscopy image has become a popular characterization method for two-dimensional material, graphene, since it can visualize grain structure and multilayer islands, and further provide structural information such as crystal orientation relations, defects, etc. unlike other imaging tools. Here we present microstructure of graphene, particularly, using DF imaging. High-angle grain boundary formation wass observed in heat-treated chemical vapor deposition-grown graphene on the Si substrate using patch-quilted DF imaging processing, which is supposed to occur by strain around multilayer islands. Upon the crystal orientation between layers the multilayer islands were categorized into the oriented one and the twisted one, and their local structure were compared. In addition information from each diffraction spot in selected area diffraction pattern was summarized.
Keywords
Graphene; Transmission electron microscopy; Dark field image; Grain structure; Recrystallization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abergel D S L, Russell A, and Fal'ko V I (2007) Visibility of a graphene flake on a dielectric substrate. Appl. Phys. Lett. 91, 063125.   DOI   ScienceOn
2 Alden J S, Tsen A W, Huang P Y, Hovden R, Brown L, Park J, Muller D A, and McEuen P L (2013) Strain solitons and topological defects in bilayer graphene. Proc. Natl. Acad. Sci. 110, 11256-11260.   DOI
3 Avetisyan A A, Partoens B, and Peeters F M (2010) Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81, 115432.   DOI
4 Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, and Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574-578.   DOI
5 Bhaviripudi S, Jia X, Dresselhaus M S, and Kong J (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 10, 4128-4133.   DOI   ScienceOn
6 Blakea P, Hill E W, Castro Neto A H, Novoselov K S, Jiang D, Yang R, Booth T J, and Geim A K (2007) Making graphene visible. Appl. Phys. Lett. 91, 063124.   DOI
7 Brown L, Hovden R, Huang P, Wojcik M, Muller D A, and Park J (2012) Twinning and twisting of tri-and bilayer graphene. Nano Lett. 12, 1609-1615.   DOI
8 Cao H, Yu Q, Jauregui L A, Tian J, Wu W, Liu Z, Jalilian R, Benjamin D K, Jiang Z, Bao J, Pei S S, and Chen Y P (2010) Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum hall effect and weak localization. Appl. Phys. Lett. 96, 122106.   DOI
9 Castro E, Novoselov K, Morozov S, Peres N, dos Santos J, Nilsson J, Guinea F, Geim A, and Neto A (2007) Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802.   DOI
10 Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, and Geim A K (2009) The electronic properties of graphene. Rev. Mod. Phys. 81, 109-162.   DOI
11 Cockayne E, Rutter G M, Guisinger N P, Crain J N, First P N, and Stroscio J A (2011) Grain boundary loops in graphene. Phys. Rev. B 83, 195425.   DOI
12 Duong D L, Han G H, Lee S M, Gunes F, Kim E S, Kim S T, Kim H, Ta Q H, So K P, Yoon S J, Chae S J, Jo Y W, Park M H, Chae S H, Lim S C, Choi J Y, and Lee Y H (2012) Probing graphene grain boundaries with optical microscopy. Nature 490, 235-239.   DOI   ScienceOn
13 Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, McLeod A S, Dominguez G, Thiemens M, Castro Neto A H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M, and Basov D N (2013) Electronic and plasmonic phenomena at graphene grain boundaries. Nat. Nanotechnol. 8, 821-825.   DOI
14 Grantab R, Shenoy V B, and Ruoff R S (2010) Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330, 946-948.   DOI
15 Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, and Geim A K (2006) Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401.   DOI
16 Geim A K (2009) Graphene: status and prospects. Science 324, 1530-1534.   DOI   ScienceOn
17 Geim A K and Novoselov K S (2007) The rise of graphene. Nat. Mater. 6, 183-191.   DOI
18 Hashimoto A, Suenaga K, Gloter A, Urita K, and Iijima S (2004) Direct evidence for atomic defects in graphene layers. Nature 430, 870-873.   DOI
19 Hicks J, Sprinkle M, Shepperd K, Wang F, Tejeda A, Taleb-Ibrahimi A, Bertran F, Le Fevre P, de Heer W A, Berger C, and Conrad E H (2011) Symmetry breaking in commensurate graphene rotational stacking: a comparison of theory and experiment. Phys. Rev. B 83, 205403.   DOI
20 Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, and Muller D A (2011) Grains and grain boundaries in singlelayer graphene atomic patchwork quilts. Nature 469, 389-393.   DOI
21 Kim C J, Brown L, Graham M W, Hovden R, Havener R W, McEuen P L, Muller D A, and Park J (2013) Stacking order dependent second harmonic generation and topological defect in h-BN bilayers. Nano Lett. 13, 5660-5665.   DOI
22 Kim D W, Kim Y H, Jeong H S, and Jung H T (2012) Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nat. Nanotechnol. 7, 29-34.   DOI
23 Lee G H, Cooper R C, An S J, Lee S, van der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W, Kysar J W, and Hone J (2013) High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340, 1073-1076.   DOI
24 Kim J, Cote L J, Kim F, and Huang J (2009) Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc. 132, 260-267.
25 Kim J, Kim F, and Huang J (2010) Seeing graphite-based sheets. Materials Today 13, 28-38.
26 Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykko P, and Nieminen R M (2009) Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys. Rev. Lett. 102, 126807.   DOI
27 Lee S, Lee K, and Zhong Z (2010) Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett. 10, 4702-4707.   DOI
28 Lee S M, Kim S M, Na M Y, Chang H J, Kim K S, Yu H, Lee H J, and Kim J H (2005 accepted) Materialization of strained CVD-graphene using thermal mismatch. Accepted for publication in Nano Res.
29 Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, and Ruoff R S (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312-1314.   DOI   ScienceOn
30 Li X, Magnuson C W, Venugopal A, An J, Suk J W, Han B, Borysiak M, Cai W, Velamakanni A, Zhu Y, Fu L, Vogel E M, Voelkl E, Colombo L, and Ruoff R S (2010) Graphene films with large domain size by a twostep chemical vapor deposition process. Nano Lett. 10, 4328-4334.   DOI
31 Liu Y and Yakobson B I (2010) Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett. 10, 2178-2183.   DOI
32 Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, and Zamora F (2011) 2D materials: to graphene and beyond. Nanoscale 3, 20-30.   DOI
33 Lopes dos Santos J M B, Peres N M R, and Castro Neto A H (2007) Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802.   DOI
34 Lui C H, Li Z, Mak K F, Cappelluti E, and Heinz T F (2011) Observation of an electrically tunable band gap in trilayer graphene. Nat. Phys. 7, 944-947.   DOI
35 Luican A, Li G, Reina A, Kong J, Nair R, Novoselov K, Geim A, and Andrei E (2011) Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 106, 126802.   DOI
36 Mele E J (2010) Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405R.   DOI
37 Ni Z H, Wang H M, Kasim J, Fan H M, Yu T, Wu Y H, Feng Y P, and Shen Z X (2007) Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758-2763.   DOI
38 Ohta T, Bostwick A, Seyller, T, Horn K, and Rotenberg E (2006) Controlling the electronic structure of bilayer graphene. Science 313, 951-954.   DOI   ScienceOn
39 Ping J and Fuhrer M S (2012) Layer number and stacking sequence imaging of few-layer graphene by transmission electron microscopy. Nano Lett. 12, 4635-4641.   DOI
40 Robertson A W, Bachmatiuk A, Wu Y A, Schaffel F, Rellinghaus B, Buchner B, Rummeli M H, and Warner J H (2011) Atomic structure of interconnected few-layer graphene domains. ACS Nano 5, 6610-6618.   DOI
41 Ryu G H, Park H J, Kim N Y, and Lee Z (2012) Atomic resolution imaging of rotated bilayer graphene sheets using a low kV aberrationcorrected transmission electron microscope. Appl. Microsc. 42, 218-222.   DOI
42 van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y M, Lee G H, Heinz T F, Reichman D R, Muller D A, and Hone J C (2013) Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554-561.   DOI
43 Shallcross S, Sharma S, Landgraf W, and Pankratov O (2011) Electronic structure of graphene twist stacks. Phys. Rev. B 83, 054502.   DOI
44 Shi Y, Wang D, Zhang J, Zhang P, Shi X, and Hao Yue (2014 accepted) Synthesis of Multilayer graphene films on copper by modified chemical vapor deposition. Accepted for publication in Mater. Manuf. Process.
45 Suarez Morell E, Vargas P, Chico L, and Brey L (2011) Charge redistribution and interlayer coupling in twisted bilayer graphene under electric fields. Phys. Rev. B 84, 195421.   DOI
46 Yan K, Peng H, Zhou Y, Li H, and Liu Z (2011) Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 11, 1106-1110.   DOI
47 Yazyev O V and Louie S G (2010) Electronic transport in polycrystalline graphene. Nat. Mater. 9, 806-809.   DOI   ScienceOn
48 Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, and Wang, F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820-823.   DOI