This paper attempts to establish a scoring system for the originality in evaluation of mathematical creativity. The scoring system is composed of three categories; fluency, flexibility and originality. In this paper, we proposed an evaluation method for originality as following based on relative frequency and standard normal distribution. (1) Fluency: It is judged on the basis of the number of correct answers a student made. If several correct answers are given for a single category, then its maximum score is set to 5 points. (2) Flexibility: We examined how many categories the students' responses can be classified into. If at most 15 answers are allowed for each question, the maximum score of flexibility is 15 points. (3) Originality: Originality score is given if a student made some original response that other students did not show. That is, it reflects relative rarity. The originality is measured according to the following steps: Step 1: Analyze the frequency of how many students made an answer to the response type categorized at low level, and calculate the relative frequency p of each category. Step 2: Find the originality point os for each response, that is, os = max{0,z} where z satisfies P(Z > z) = p with standard normal distributed random variable Z. For example, - p is greater than 0.5: 0 point - p is 0.1587: 1 point - p is 0.0228: 2 points - p is 0.0013: 3 points Step 3: Assign the one's originality score to the sum of originality point for each response. Remark. There is no upper limit of originality score.
본 연구는 한국 여성들의 교육과 정책 변화의 흐름을 알아보는 것이다. 먼저 여성 교육에 대한 편견이 깊이 뿌리박혀 있는 한국에서의 여성 교육의 역사적 배경을 살펴보았다. PISA와 TIMSS와 같은 학업성취도 국제 비교 연구와, 국가수준 학업성취도 연구를 통해 특별히 과학과 수학에서 남녀 학생의 성취 수준의 차이를 알아보았다. 여학생들이 일반적인 학업성취에서는 남학생보다 우수하거나 같았고, 국제평가에서는 읽기 소양에서는 남학생보다 높은 성취를 보였으나, 수학과 과학에서는 남학생보다 훨씬 낮은 수준이었다. 남여 학생 간의 성취도의 차이는 OECD 회원국 중에서 가장 컸다. 또한 교육 제도와 학업과 직업적 성취를 중심으로 현대사회에서 여성의 위치가 어떻게 변하고 있는지를 조사했다. 더불어 여성 전문가 양성을 지원하는 다양한 계획과 정책에 대해서도 소개했다. 끝으로, 남학생과 여학생의 학업성취 격차에 대한 원인들을 살펴보았고, 수학과 과학의 남녀 학생의 차이를 줄이기 위한 몇 가지 제안을 했다.
In this paper, we will define direct producted $W^*-porobability$ spaces over their diagonal subalgebras and observe the amalgamated free-ness on them. Also, we will consider the amalgamated free stochastic calculus on such free probabilistic structure. Let ($A_{j},\;{\varphi}_{j}$) be a tracial $W^*-porobability$ spaces, for j = 1,..., N. Then we can define the corresponding direct producted $W^*-porobability$ space (A, E) over its N-th diagonal subalgebra $D_{N}\;{\equiv}\;\mathbb{C}^{{\bigoplus}N}$, where $A={\bigoplus}^{N}_{j=1}\;A_{j}\;and\;E={\bigoplus}^{N}_{j=1}\;{\varphi}_{j}$. In Chapter 1, we show that $D_{N}-valued$ cumulants are direct sum of scalar-valued cumulants. This says that, roughly speaking, the $D_{N}-freeness$ is characterized by the direct sum of scalar-valued freeness. As application, the $D_{N}-semicircularityrity$ and the $D_{N}-valued$ infinitely divisibility are characterized by the direct sum of semicircularity and the direct sum of infinitely divisibility, respectively. In Chapter 2, we will define the $D_{N}-valued$ stochastic integral of $D_{N}-valued$ simple adapted biprocesses with respect to a fixed $D_{N}-valued$ infinitely divisible element which is a $D_{N}-free$ stochastic process. We can see that the free stochastic Ito's formula is naturally extended to the $D_{N}-valued$ case.
Given a pair p, q of relative prime positive integers, we have uniquely determined positive integers x, y, u and v such that vx-uy = 1, p = x + y and q = u + v. Using this property, we show that$${\sum\limits_{1{\leq}i{\leq}x,1{\leq}j{\leq}v}}\;{t^{(i-1)q+(j-1)p}\;-\;{\sum\limits_{1{\leq}k{\leq}y,1{\leq}l{\leq}u}}\;t^{1+(k-1)q+(l-1)p}$$ is the Alexander polynomial ${\Delta}_{p,q}(t)$ of a torus knot t(p, q). Hence the number $N_{p,q}$ of non-zero terms of ${\Delta}_{p,q}(t)$ is equal to vx + uy = 2vx - 1. Owing to well known results in knot Floer homology theory, our expanding formula of the Alexander polynomial of a torus knot provides a method of algorithmically determining the total rank of its knot Floer homology or equivalently the complexity of its (1,1)-diagram. In particular we prove (see Corollary 2.8); Let q be a positive integer> 1 and let k be a positive integer. Then we have $$\begin{array}{rccl}(1)&N_{kq}+1,q&=&2k(q-1)+1\\(2)&N_{kq}+q-1,q&=&2(k+1)(q-1)-1\\(3)&N_{kq}+2,q&=&{\frac{1}{2}}k(q^2-1)+q\\(4)&N_{kq}+q-2,q&=&{\frac{1}{2}}(k+1)(q^2-1)-q\end{array}$$ where we further assume q is odd in formula (3) and (4). Consequently we confirm that the complexities of (1,1)-diagrams of torus knots of type t(kq + 2, q) and t(kq + q - 2, q) in [5] agree with $N_{kq+2,q}$ and $N_{kq+q-2,q}$ respectively.
Let R be a ring R and ${\sigma}$ be an endomorphism of R. R is called ${\sigma}$-rigid (resp. reduced) if $a{\sigma}r(a) = 0 (resp{\cdot}a^2 = 0)$ for any $a{\in}R$ implies a = 0. An ideal I of R is called a ${\sigma}$-ideal if ${\sigma}(I){\subseteq}I$. R is called ${\sigma}$-quasi-Baer (resp. right (or left) ${\sigma}$-p.q.-Baer) if the right annihilator of every ${\sigma}$-ideal (resp. right (or left) principal ${\sigma}$-ideal) of R is generated by an idempotent of R. In this paper, a skew polynomial ring A = R[$x;{\sigma}$] of a ring R is investigated as follows: For a ${\sigma}$-rigid ring R, (1) R is ${\sigma}$-quasi-Baer if and only if A is quasi-Baer if and only if A is $\={\sigma}$-quasi-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$ (2) R is right ${\sigma}$-p.q.-Baer if and only if R is ${\sigma}$-p.q.-Baer if and only if A is right p.q.-Baer if and only if A is p.q.-Baer if and only if A is $\={\sigma}$-p.q.-Baer if and only if A is right $\={\sigma}$-p.q.-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$.
전자문서는 생성 및 관리가 효율적이나 유통 및 전달 과정에서 사본이 생성되기 때문에 원본성을 상실하기 쉽다. 이러한 이유로 전자문서에 대한 다양한 보안 기술이 적용되었으나, 현재 사용되고 있는 보안 기술은 대부분 파일 접근 권한 제어, 파일 버전 및 이력 관리 등과 같은 문서 관리에 대한 것이므로 기밀문서와 같이 원본성 확보가 절대적으로 요구되어지는 환경에서는 사용이 불가능하다. 따라서 본 논문에서는 클라우드 컴퓨팅 환경에서 인스턴스 운영체제 내부에 별도의 에이전트 설치 없이 파일시스템 분석을 통하여 문서 위/변조를 탐지하는 기법을 제안한다. BubbleDoc은 인스턴스의 가상 볼륨 스토리지의 최소 영역을 모니터링하기 때문에 문서에 대한 위/변조를 효율적으로 탐지할 수 있다. 실험 결과에 따르면 본 논문에서 제안한 기술은 문서 위/변조 탐지를 위한 모니터링 수행에 있어서 1,000ms 주기로 설정하였을 때 0.16%의 디스크 읽기 연산 오버헤드를 보였다.
본 연구는 측정 영역의 문제해결 과정에서 나타나는 초등학교 6학년 학생의 오류를 분석하였다. 초등 5~6학년군의 내용에서 학생들이 어려워하는 부분에 대한 오류를 분석함으로써 학생들의 성취기준 도달을 도울 수 있는 교수 학습에서의 시사점을 도출하고자 하였다. 첫째, 문제를 해결할 수 있는 충분한 시간을 학생들에게 제공했음에도 불구하고 풀이과정을 바르게 쓰지 못한 학생이 문항에 따라 약 30~60%에 이르렀다는 점은 학생들이 측정 영역의 일부에서 어려움을 겪고 있음을 시사한다. 둘째, 단위 사이의 관계에 대한 불충분한 이해 등 측정 단위에 대한 학생들의 이해가 낮은 것을 확인하였다. 셋째, 학생들은 삼각형에서 밑변이 정해지면 그에 따라 높이가 결정되고 이로부터 삼각형의 넓이를 구하는 여러 개의 식을 도출할 수 있다는 것에 대한 이해가 낮은 것으로 나타났다.
Let C[0, t] denote a generalized Wiener space, the space of real-valued continuous functions on the interval [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}{\mathbb{R}}^n$ by $Zn(x)=(\int_{0}^{t_1}h(s)dx(s),{\cdots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $t_n$ < t is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. In this paper we will introduce a simple formula for a generalized conditional Wiener integral on C[0, t] with the conditioning function $Z_n$ and then evaluate the generalized analytic conditional Wiener and Feynman integrals of the cylinder function $F(x)=f(\int_{0}^{t}e(s)dx(s))$ for $x{\in}C[0,t]$, where $f{\in}L_p(\mathbb{R})(1{\leq}p{\leq}{\infty})$ and e is a unit element in $L_2[0,t]$. Finally we express the generalized analytic conditional Feynman integral of F as two kinds of limits of non-conditional generalized Wiener integrals of polygonal functions and of cylinder functions using a change of scale transformation for which a normal density is the kernel. The choice of a complete orthonormal subset of $L_2[0,t]$ used in the transformation is independent of e and the conditioning function $Z_n$ does not contain the present positions of the generalized Wiener paths.
Ethyl acetate extracts obtained from culture of endophytic fungi Aspergillus sp isolated from Piper crocatum Ruiz & Pav, have been shown to possess cytotoxic activity against T47D breast cancer cells. Investigations were here conducted to determine bioactive compounds responsible for the activity. Bioassay guided fractionation was employed to obtain active compounds. Structure elucidation was performed based on analysis of LC-MS, $^1H$-NMR, $^{13}C$-NMR, COSY, DEPT, HMQC, HMBC data. Cytotoxity assays were conducted in 96 well plates against T47D and Vero cell lines. Bioassay guided isolation and chemical investigation led to the isolation of pyrophen, a 4-methoxy-6-(1'-acetamido-2'-phenylethyl)-2H-pyran-2-one. Further analysis of its activity against T47D and Vero cells showed an ability to inhibit the growth of T47D cells with IC50 values of $9.2{\mu}g/mL$ but less cytotoxicity to Vero cells with an $IC_{50}$ of $109{\mu}g/mL$. This compound at a concentration of 400 ng/mL induced S-phase arrest in T47D cells.
The point $P{\in}{\mathbb{P}}^2$ is referred to as a Galois point for a nonsingular plane algebraic curve C if the projection ${\pi}_P:C{\rightarrow}{\mathbb{P}}^1$ from P is a Galois covering. In contrast, the point $P^{\prime}{\in}C^{\prime}$ is referred to as a weak Galois Weierstrass point of a nonsingular algebraic curve C' if P' is a Weierstrass point of C' and a total ramification point of some Galois covering $f:C^{\prime}{\rightarrow}{\mathbb{P}}^1$. In this paper, we discuss the following phenomena. For a nonsingular plane curve C with a Galois point P and a double covering ${\varphi}:C{\rightarrow}C^{\prime}$, if there exists a common ramification point of ${\pi}_P$ and ${\varphi}$, then there exists a weak Galois Weierstrass point $P^{\prime}{\in}C^{\prime}$ with its Weierstrass semigroup such that H(P') = or , which is a semigroup generated by two positive integers r and 2r + 1 or 2r - 1, such that P' is a branch point of ${\varphi}$. Conversely, for a weak Galois Weierstrass point $P^{\prime}{\in}C^{\prime}$ with H(P') = or , there exists a nonsingular plane curve C with a Galois point P and a double covering ${\varphi}:C{\rightarrow}C^{\prime}$ such that P' is a branch point of ${\varphi}$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.