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RELATING GALOIS POINTS TO WEAK GALOIS

WEIERSTRASS POINTS THROUGH DOUBLE

COVERINGS OF CURVES

Jiryo Komeda and Takeshi Takahashi

Abstract. The point P ∈ P
2 is referred to as a Galois point for a non-

singular plane algebraic curve C if the projection πP : C → P
1 from P

is a Galois covering. In contrast, the point P ′
∈ C′ is referred to as a

weak Galois Weierstrass point of a nonsingular algebraic curve C′ if P ′

is a Weierstrass point of C′ and a total ramification point of some Galois
covering f : C′

→ P
1. In this paper, we discuss the following phenom-

ena. For a nonsingular plane curve C with a Galois point P and a double
covering ϕ : C → C′, if there exists a common ramification point of πP

and ϕ, then there exists a weak Galois Weierstrass point P ′
∈ C′ with

its Weierstrass semigroup such that H(P ′) = 〈r, 2r − 1〉 or 〈r, 2r + 1〉,
which is a semigroup generated by two positive integers r and 2r + 1 or
2r− 1, such that P ′ is a branch point of ϕ. Conversely, for a weak Galois
Weierstrass point P ′

∈ C′ with H(P ′) = 〈r, 2r − 1〉 or 〈r, 2r + 1〉, there
exists a nonsingular plane curve C with a Galois point P and a double
covering ϕ : C → C′ such that P ′ is a branch point of ϕ.

1. Introduction

We work over an algebraically closed field k of characteristic 0. A curve
refers to a complete nonsingular irreducible algebraic curve over k, and a plane
curve refers to a curve in P

2.
Morrison and Pinkham have introduced the notion of a Galois Weierstrass

point as follows.

Definition 1.1 ([12]). Let C be a curve of genus g ≥ 2. A point P ∈ C is
termed a Galois Weierstrass point (GW point), if Φ|aP | : C → P

1 is a Galois
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covering, where a is the smallest positive integer of the Weierstrass semigroup

H(P ) := {n ∈ Z≥0 | ∃f ∈ k(C) such that (f)∞ = nP}.

Remark 1.1. A GW point may be a non-Weierstrass point. However, in this
paper, we only treat GW points that are Weierstrass points.

Yoshihara introduced the notion of a Galois point for a plane curve as follows.

Definition 1.2 ([10, 14]). Let C be a plane curve of degree d ≥ 3. For a
point P ∈ P

2, the projection πP : C → P
1 from P induces an extension of

function fields π∗
P : k(P1) →֒ k(C). P is referred to as a Galois point for C if

the extension is of the Galois type. Moreover, when P ∈ C or when P 6∈ C,
the point is considered to be an inner or outer Galois point, respectively.

GW points have been studied previously ([7, 8, 12]) and studies on Galois
points have also been reported (e.g., [4, 10, 14]). In addition, some studies on
double coverings of curves have been conducted (e.g., [9, 13]). The purpose
of this work is to study new phenomena pertaining to relationships between
certain kinds of GW points and Galois points by examining the branch points
of double coverings of curves.

In this regard, we define two new concepts, namely a weak GW point and a
pseudo-GW point, as follows.

Definition 1.3. Let C be a curve of genus g ≥ 2. We refer to P ∈ C as a
weak GW point if

(1) P is a total ramification point of some Galois covering f : C → P
1, and

(2) P is a Weierstrass point of C.

Moreover, if P is not a GW point, we consider P a pseudo-GW point. For a
weak GW point P , we denote

degGW(P )

:= {deg f | Galois covering f : C → P
1 which is totally ramified at P}

and we refer to it as the set of degrees of the weak GW point.

Remark 1.2. On Definition 1.3, the Galois group of the Galois extension
k(C)/f∗(k(P1)) is isomorphic to the group Gal(f) := {σ ∈ Aut(C) | f ◦σ = f},
and the group is a cyclic group.

We denote 〈a, b〉 as the semigroup generated by elements a, b ∈ N and
Ramif(f) as the set of ramification points of morphism f . Our main theo-
rem is the following.

Theorem 1.1. Let C ⊂ P
2 be a plane curve of degree d ≥ 5. Assume that

there exists a Galois point P for C and a double covering ϕ : C → C′, where

C′ is a curve, such that Ramif(πP ) ∩ Ramif(ϕ) 6= ∅. We choose P ′ ∈ C′ as

follows:

(1) if P is an inner Galois point, then P ′ := ϕ(P ).
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(2) if P is an outer Galois point, then let P ′ = ϕ(Q) for some Q ∈
Ramif(πP ) ∩ Ramif(ϕ).

Then, P ′ is a weak GW point. Moreover, on H(P ′) and degGW(P ′) of the

weak GW point P ′ with respect to d and P , we have Table 1.

Table 1. The Weierstrass semigroup and the set of degrees
of the weak GW point

P is an inner Galois point P is an outer Galois point

d is odd H(P ′) = 〈(d− 1)/2, d〉, H(P ′) = 〈(d− 1)/2, d〉,
(d− 1)/2 ∈ degGW(P ′) d ∈ degGW(P ′)

d is even H(P ′) = 〈d/2, d− 1〉, H(P ′) = 〈d/2, d− 1〉,
d− 1 ∈ degGW(P ′) d/2 ∈ degGW(P ′)

Conversely, let C′ be a curve and P ′ be a weak GW point with H(P ′) =
〈(d − 1)/2, d〉 or 〈d/2, d− 1〉 for d ≥ 5. Then, there exists a plane curve C of

degree d, a Galois point P for C, and a double covering ϕ : C → C′ such that

P ′ is obtained as above.

Remark 1.3. Let C be a plane curve of degree d ≥ 5. Assume that there exists
a Galois point P for C. If d is odd and P is an inner point, or d is even and
P is an outer point, then there exists a double covering ϕ : C → C′, where C′

is a curve, such that Ramif(πP ) ∩ Ramif(ϕ) 6= ∅. For details, see Lemmas 4.1
and 4.3. When d is even and P is an inner point, or d is odd and P is an outer
point, if there exists a double covering ϕ : C → C′, where C′ is a curve, then
Ramif(πP ) ∩ Ramif(ϕ) 6= ∅. For details, see Lemmas 4.5 and 4.7.

In Section 2, we describe some preliminary or fundamental results on Galois
points and weak GW points. In Section 3, we show some important examples
of Galois points and weak GW points. In Section 4, we prove Theorem 1.1.

2. Preliminary

In this section, we describe selected preliminary or fundamental results on
Galois points and weak GW points.

First, the results on Galois points are summarized.

Theorem 2.1 ([5, 10, 14]). Let C be a plane curve of degree d (d ≥ 4). Then:

(1) If P ∈ P
2 is a Galois point for C, then the Galois group of

k(C)/π∗
P (k(P

1)) is cyclic.

(2) The point P is either an inner or outer Galois point if and only if, by

changing the coordinates in a suitable way, we may assume that

(1) P = (0 : 0 : 1) and C : XZd−1 + fd(X,Y ) = 0 or Zd + fd(X,Y ) = 0,

where fd(X,Y ) is a homogeneous polynomial of degree d.
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(3) If d ≥ 5, then the number of inner Galois points for C equals 0 or 1.
If d = 4, then the number of inner Galois points for C equals 0, 1,
or 4. Moreover, the number equals 4 if and only if C is projectively

equivalent to the curve XZ3 + X4 + Y 4 = 0. The four Galois points

for the curve are on Y = 0.
(4) The number of outer Galois points for C equals 0, 1, or 3. Moreover,

the number equals 3 if and only if, C is projectively equivalent to the

Fermat curve Xd+Y d+Zd = 0. The three Galois points for the curve

are (1 : 0 : 0), (0 : 1 : 0), and (0 : 0 : 1).
(5) There exist both an inner and an outer Galois point for C if and only

if C is projectively equivalent to the curve XZd−1 +Xd + Y d = 0. If

d ≥ 5 or d = 4, then the Galois points for the curve are either (0 : 0 : 1)
and (0 : 1 : 0) or four points of C ∩ (Y = 0) and (0 : 1 : 0), respectively.

Remark 2.1. According to [2] or [1, Appendix A, 17 and 18], if C is a plane curve
of degree d ≥ 4, then every element of Aut(C) is a restriction of some projective
transformation of P2. In this paper, we often express an element of Aut(C) as
an element of PGL(3, k). We note that an element A ∈ PGL(3, k) induces a
projective transformation (X ′ : Y ′ : Z ′) 7→ (X : Y : Z) such that (X Y Z)tr =
A (X ′ Y ′ Z ′)tr, where (X Y Z)tr and (X ′ Y ′ Z ′)tr indicate transposed matrices
of (X Y Z) and (X ′ Y ′ Z ′). Assume that P is a Galois point for a plane curve
C. Then, a generator σ of its Galois group can be expressed as a projective
transformation Tσ ∈ Aut(P2). We denote Fix(σ) := {Q ∈ P

2 | Tσ(Q) = Q}.
Based on [14], if P and C are given by (1), then Tσ is expressed as

(2)





1 0 0
0 1 0
0 0 ζ



 ,

where ζ is a primitive (d − 1)th or dth root of unity, respectively. We have
Fix(σ) = {P} ∪ ℓZ , where ℓZ is the line defined by Z = 0.

Remark 2.2. Let C be a plane curve of degree d ≥ 5. Assume that C is not
projectively equivalent to a Fermat curve, and there exists a Galois point P for
C. Then, by Theorem 2.1, there exists at most one inner or at most one outer
Galois point. Hence, τ(P ) = P for every automorphism τ .

For a specific point in a plane curve, we can determine its Weierstrass semi-
group as follows. For a point P on a plane curve C, we denote IP (C, TPC) as
the local intersection multiplicity at P of C and the tangent line TPC to C at
P .

Lemma 2.1 ([3]). Let C be a plane curve of degree d and P be a point on C.

Then:

(1) if IP (C, TPC) = d, then H(P ) = 〈d− 1, d〉;
(2) if IP (C, TPC) = d− 1, then H(P ) = 〈{i(d− 2) + 1 | i = 1, . . . , d− 1}〉.
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For a branch point of a double covering, we can determine its Weierstrass
semigroup as follows.

Lemma 2.2 ([6, page 392]). Let π : C → C′ be a double covering of curves,

P ∈ C be a ramification point of π, and P ′ := π(P ). Then H(P ′) = {n ∈ Z≥0 |
2n ∈ H(P )}.

For the case in which the Weierstrass semigroup is generated by two integers,
we have the following fundamental result on degGW(P ).

Proposition 2.1. If P is a weak GW point of a curve C with H(P ) = 〈a, b〉
(a < b), then a ∈ degGW(P ) or b ∈ degGW(P ).

Proof. Let g : C → P
1 be a Galois covering such that P is a total ramification

point, and (g)∞ = nP . Note that n ∈ H(P ), that is, Bs |nP | = ∅. Let σ be a
generator of the cyclic group Gal(g) := {σ ∈ Aut(C) | g ◦ σ = g}. Let x and y

be functions such that (x)∞ = aP and (y)∞ = bP .

Claim 2.1. We may assume σ∗x = αx, where α ∈ k \ {0}.

We prove Claim 2.1. Because (σ∗x)∞ = aP and H(P ) = 〈a, b〉, let σ∗x =
α1x + α2, where α1, α2 ∈ k. Assume that α2 6= 0. Because the order of σ is
finite, we have α1 6= 1. Then, X := (α1 − 1)x+ α2 holds that (X)∞ = aP and
σ∗(X) = α1X . We conclude Claim 2.1.

Claim 2.2. We may assume that σ∗y = βy, where β ∈ k \ {0}.

We prove Claim 2.2. Let l := [b/a] = max{n ∈ N | an ≤ b}. Then,
H0(C,OC(bP )) = {f ∈ k(C) | (f) + bP ≥ 0} = 〈1, x, x2, . . . , xl, y〉. Let
σ∗y = βy + βlx

l + · · · + β1x + β0, where β, βi ∈ k. Assume that βi 6= 0 for
some i. Let Bi := βi/(β − αi) if β 6= αi, and Bi := 0 (actually Bi may be any
number) if otherwise (i = 0, . . . , l). Note that if β = αi, then βi = 0, because
the order of σ is finite. We have that Y := y+Blx

l+ · · ·+B0 holds (Y )∞ = bP

and σ∗(Y ) = βY . We conclude Claim 2.2.
We show that the morphism C → P

1 defined by x or y is a Galois covering.
As H(P ) = 〈a, b〉, we have that H0(C,OC(nP )) = {f ∈ k(C) | (f) + nP ≥
0} = 〈1, x, . . . , y, . . . , xsyt〉 and (xsyt)∞ = nP . The Galois covering g is given
by z := As,tx

syt + · · · + A0,0, where Ai,j ∈ k. Because σ∗z = z, As,t 6= 0 and
1, x, . . . , y, . . . , xsyt are linearly independent over k, we have that αsβt = 1.
Hence, σ∗(xsyt) = xsyt. Thus, the morphism defined by xsyt, which we denote
as ϕ : C → P

1, is a Galois covering of degree n, and P is its total ramification
point.

Claim 2.3. st = 0.

We prove Claim 2.3. For a sufficiently large N ∈ N, NP is very ample and
the embedding Φ|NP | is defined by functions xiyj . Because the Galois covering

ϕ is defined by the function xsyt and the Galois group is generated by σ, which
is given by σ∗x = αx and σ∗y = βy, if st 6= 0, then we see that the branch
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points of ϕ are only (0 : 1) and (1 : 0). According to the Riemann–Hurwitz
formula, the genus of C must be equal to zero, which is a contradiction. We
conclude Claim 2.3.

Therefore, the morphism defined by the function xs or yt is of the Galois
type. Hence, we have that the morphism defined by the function x or y is of
the Galois type, of which the degree is either a or b. �

In the case for which a curve has a weak GW point and its Weierstrass
semigroup is generated by two integers, the structure of the function field of
the curve is as follows.

Theorem 2.2. Let P be either a GW point or pseudo-GW point, respectively,

on a curve C with H(P ) = 〈a, b〉. Then, there exist x, y ∈ k(C) with (x)∞ = aP

and (y)∞ = bP such that k(C) = k(x, y) and ya =
∏b

i=1(x − ci) or xb =
∏a

i=1(y − ci), respectively, where each ci is a distinct element of k.

We conclude Theorem 2.2 by Lemmas 2.3 and 2.4 below.

Lemma 2.3. Let P be a GW point of a curve C with H(P ) = 〈a, b〉. Then,

for any x ∈ k(C) with (x)∞ = aP , there exists a rational function y ∈ k(C)

with (y)∞ = bP such that k(C) = k(x, y) and ya =
∏b

i=1(x − ci), where each

ci is a distinct element of k.

Proof. First, we show that we have k(C) = k(x, y) for any x, y ∈ k(C) with
(x)∞ = aP and (y)∞ = bP . We have that H0(C,OC(aP )) = 〈1, x〉. We may
assume that Φ|aP | is a morphism sending Q to (1 : x(Q)), which implies that

k(C) ⊃ k(x). Then, ya ∈ H0(C,OC(abP )). We have that

H0(C,OC(abP )) = 〈{xiyj | 0 ≤ i, 0 ≤ j, ai + bj < ab} ∪ {xb}〉.

Hence, we obtain

ya =

a−1
∑

j=0

∑

ai+bj<ab

cijx
iyj + cb0x

b.

Thus, we have that k(x) ⊂ k(x, y) ⊂ k(C) and the degree of the extension
k(x, y)/k(x) equals a, which implies that k(x, y) = k(C).

Because Φ|aP | : C → P
1 is cyclic, there exists an automorphism σ of C of

which the order equals a, which induces an automorphism σ∗ ofH0(C,OC(bP ))
= 〈1, x, x2, . . . , xt, y〉, where t = [b/a] = max{n ∈ Z | na ≤ b}, satisfying
σ∗1 = 1, σ∗x = x, σ∗x2 = x2,. . ., σ∗xt = xt and σ∗y 6= y. The eigenvalues
of σ∗ are 1, 1, . . . .1, ζ, where ζ is a primitive ath root of unity. Take y as an
eigenvector of ζ. Then we obtain (y)∞ = bP ′ and σ∗y = ζy. We have

ya + fa−1(x)y
a−1 + · · ·+ f1(x)y + f0(x) = 0.

Hence, we obtain

0 = σ∗(y)a + fr−1(x)σ
∗(y)a−1 + · · ·+ f1(x)σ

∗(y) + f0(x)

= ζaya + fa−1(x)ζ
a−1ya−1 + · · ·+ f1(x)ζy + f0(x)
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= ya + fa−1(x)ζ
a−1ya−1 + · · ·+ f1(x)ζy + f0(x),

which implies that

(ζa−1 − 1)fa−1(x)y
a−1 + · · ·+ (ζ − 1)f1(x)y = 0.

Hence, we obtain fa−1(x) = 0, . . . , f1(x) = 0, which implies that ya = −f0(x),
where the degree of f0(x) equals b. In view of H(P ) = 〈a, b〉, the genus of C
equals (a − 1)(b − 1)/2. Following the Riemann–Hurwitz formula, the sum of
the ramification indices of Φ|aP | equals (a−1)(b+1). Therefore, the morphism

Φ|aP | must have at least b + 1 branch points on P
1, which implies that f0(x)

has no multiple factors. �

Lemma 2.4. Let P be a weak GW point of a curve C with b ∈ degGW(P )
and H(P ) = 〈a, b〉. Then, there exist rational functions x and y ∈ k(C) with

(x)∞ = aP and (y)∞ = bP such that k(C) = k(x, y) and xb =
∏a

i=1(y − ci),
where each ci is a distinct element of k.

Proof. We assume that P is a total ramification point of a Galois covering
Φ : C → P

1 of degree b, and for some rational function y on C with (y)∞ = bP

the morphism Φ sends a point Q of C to (1 : y(Q)). Let x be a rational function
on C with (x)∞ = aP . Then we have thatH0(C,OC(bP )) = 〈1, x, x2, . . . , xt, y〉
where we set t = [b/a] = max{n ∈ Z | na ≤ b}. Moreover, the inclusion
k(y) ⊂ k(C) is a cyclic extension of degree b. We have that

xb ∈ H0(C,OC(abP )) = 〈{xiyj | 0 ≤ i, 0 ≤ j, ai+ bj < ab} ∪ {ya}〉.

Hence, we obtain k(C) = k(x, y).
Because Φ is cyclic, there exists an automorphism σ of C with ord(σ) = b

such that σ induces an automorphism σ∗ of H0(C,OC(bP )) = 〈1, x, x2, . . . , xt,
y〉 satisfying σ∗1 = 1, σ∗y = y and σ∗x 6= x. Because σ(P ) = P , we have that
σ∗x ∈ H0(C,OC(aP )) = 〈1, x〉. Let σ∗x = d1x+ d0, where d1, d0 ∈ k. As the
order of σ equals b 6= ∞, we have d1 6= 1. Then, X := (d1− 1)x+d0 holds that
(X)∞ = aP and σ∗(X) = d1X . By taking X instead of x, we may assume that
σ∗x = ζx where ζ is a primitive bth root of unity. We have that

xb + fb−1(y)x
b−1 + · · ·+ f1(y)x + f0(y) = 0,

where the degree of f0(y) is a. By applying σ∗ to the equation we obtain

xb + fb−1(y)ζ
b−1xb−1 + · · ·+ f1(y)ζx+ f0(y) = 0.

Hence, we obtain xb = −f0(y). As the genus of C equals (a − 1)(b − 1)/2
and the degree of f0(y) equals a, we have that f0(y) cannot have a multiple
factor. �

It is possible to find weak GW points directly from Galois points for a plane
curve, as follows.
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Theorem 2.3. If a point P ∈ P
2 is a Galois point for a plane curve C,

then some of the ramification points of πP are weak GW points with H(Q) =
〈d− 1, d〉. More precisely,

(1) if P is an inner Galois point, then every ramification point Q of πP is

a GW point, and

H(Q) =

{

〈d− 1, d〉 if Q = P

〈{i(d− 2) + 1 | i = 1, . . . , d− 1}〉 if Q 6= P
;

(2) if P is an outer Galois point, then every ramification point Q of πP is

a pseudo-GW point with H(Q) = 〈d − 1, d〉, except for the case where

C is projectively equivalent to XZd−1 + Xd + Y d = 0. (For the case

where C is defined by XZd−1 +Xd + Y d = 0, see Example 3.1.)

Conversely, if Q is a weak GW point of a curve C with H(Q) = 〈d− 1, d〉,
then C is isomorphic to a plane curve and Q is a ramification point of the

projection from a Galois point.

Proof. Let P be an inner Galois point for a plane curve C and Q be another
ramification point of πP . Based on Theorem 2.1, we may assume that C and
P are expressed as (1). Because IP (C, TPC) = d and IQ(C, TQC) = d − 1,
Lemma 2.1 indicates thatH(P ) = 〈d−1, d〉 and 〈{i(d−2)+1 | i = 1, . . . , d−1}〉.
Further, P and Q are total ramification points of πP and deg(πP ) = d − 1;
therefore, P and Q are GW points.

Let P be a GW point of a curve C with H(P ) = 〈d−1, d〉 (d ≥ 4). According
to Theorem 2.2, there exist x, y ∈ k(C) with (x)∞ = (d− 1)P and (y)∞ = dP

such that k(C) = k(x, y) and yd−1 =
∏d

i=1(x − ci), where each ci is a distinct
element of k. Then, we have that H0(C,OC(dP )) = 〈1, x, y〉, Φ|dP | : C → P

2

is an embedding and its image is the plane curve XZd−1−
∏d

i=1(Y − ciX) = 0.
Moreover, Φ|dP |(P ) = (0 : 0 : 1) is an inner Galois point and the point (0 : 0 : 1)
is a total ramification point of π(0:0:1).

Let P be an outer Galois point for a plane curve C and Q be a ramification
point of πP . According to Theorem 2.1, we may assume that C and P are
expressed as (1). Because IQ(C, TQC) = d, by Lemma 2.1, we see that H(Q) =
〈d−1, d〉. Further, Q is a total ramification point of πP and deg(πP ) = d; thus,
Q is a weak GW point. Assume that C is not projectively equivalent to the
curve XZd−1 +Xd + Y d = 0. Then, Q is not an inner Galois point; hence, Q
is a pseudo-GW point.

Let Q be a pseudo-GW point of a curve C with H(Q) = 〈d − 1, d〉 (d ≥ 4).
According to Theorem 2.2, there exist x, y ∈ k(C) with (x)∞ = (d − 1)P and

(y)∞ = dP such that k(C) = k(x, y) and xd =
∏d−1

i=1 (y − ci), where each ci is
a distinct element of k. Then, we have that H0(C,OC(dP )) = 〈1, x, y〉, Φ|dP | :

C → P
2 is an embedding, its image is the plane curve Y d−X

∏d−1
i=1 (Z−ciX) =

0. The point P := (0 : 1 : 0) is an outer Galois point and Φ|dP |(Q) = (0 : 0 : 1)
is a total ramification point of πP . �
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3. Examples

In this section, we state some important examples of Theorems 2.3 and 1.1.

Example 3.1. Let C ⊂ P
2 be a plane curve defined by XZd−1+Xd+Y d = 0.

Note that if d ≥ 5 or d = 4, then there exist either two or five Galois points,
respectively, for C, which either consist of one inner Galois point P := (0 : 0 : 1)
or four inner Galois points Pj := ((−1)j/3 : 0 : 1), respectively, where j = 0, 1, 2,
and P3 := (0 : 0 : 1), and one outer Galois point Pout = (0 : 1 : 0).

(1) Assume that d ≥ 5. We study C as an example of Theorem 2.3.
Let us consider on the Galois covering πP . The ramification points

of the projection πP are P and Qj := ((−1)j/d : 1 : 0), where j =
0, 1, . . . , d − 1. Because the tangent line at P to C is TPC : X = 0,
we have that IP (C, TPC) = d. Hence, according to Lemma 2.1, we
have that H(P ) = 〈d− 1, d〉 and P is a Weierstrass point. The tangent
line at Qj to C is TQj

C : X − (−1)j/dY = 0; thus, we have that
IQj

(C, TQj
C) = d − 1. Hence, by Lemma 2.1, we have that H(Qj) =

〈{i(d − 2) + 1 | i = 1, . . . , d − 1}〉 and Qj is a Weierstrass point.
Because P and Qj are total ramification points of the Galois covering
πP of degree d− 1, these are GW points.

Let us consider the Galois covering πPout
. The ramification points

of the projection πPout
are P and Q′

j := ((−1)j/(d−1) : 0 : 1), where j =

0, 1, . . . , d−2. The tangent line at Q′
j to C is TQ′

j
: X−(−1)j/(d−1)Z =

0; therefore, we have that IQ′

j
(C, TQ′

j
C) = d. Hence, according to

Lemma 2.1, we have that H(Q′
j) = 〈d − 1, d〉 and Q′

j is a Weierstrass

point. Because P and Q′
j are total ramification points of the Galois

covering πPout
of degree d, these are weak GW points. Further, as P is

a GW point, P is not a pseudo-GW point. As Q′
j is not a Galois point,

we infer that Q′
j is not a GW point; thus, Q′

j is a pseudo-GW point.
(2) Assume that d = 4. We study C as an example of Theorem 2.3.

By an argument similar to that used for d ≥ 5, we have the following.
The points Pj are GW points with H(Pj) = 〈3, 4〉. The ramification
points of the projection πPj

are Pj and three other points Qjk, where
k = 1, 2, 3. The points Qjk are total ramification points of πPj

and
GW points with H(Qjk) = 〈3, 5, 7〉. The ramification points of πPout

are four inner Galois points Pj , and these are GW points.
(3) Assume that d ≥ 5 and d is odd. We study C as an example of

Theorem 1.1. Let σP be an automorphism belonging to the inner Galois

point P , and ι := σ
(d−1)/2
P . According to Lemma 4.1, a non-trivial

involution of C is only ι. We have that σP is expressed as (2), and

ι1 =





1 0 0
0 1 0
0 0 −1



 .
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Considering that d is odd, let C′ be the curve given by the equation
X̄Z̄(d−1)/2 + X̄d + Ȳ d = 0 in the weighted projective space P(1, 1, 2),
where (X̄, Ȳ , Z̄) are weighted homogeneous coordinates. Then, C′ is
nonsingular. (Note that the point (0, 0, 1) is a singular point of P(1, 1, 2)
and C is nonsingular at (0, 0, 1).) Let ϕ : C → C′ be a double covering
defined by (X : Y : Z) 7→ (X,Y, Z2). Then, ϕ ◦ ι = ϕ. Let P ′ := ϕ(P ).
Because P is a ramification point of ϕ, according to Lemma 2.2 we
have that H(P ′) = 〈(d − 1)/2, d〉 and P ′ is a Weierstrass point. Let
f : C′ → P

1 be a morphism defined by (X̄, Ȳ , Z̄) 7→ (X̄ : Ȳ ). Then, f
is a Galois covering of degree (d − 1)/2 and P ′ is a total ramification
point of f . Hence, P ′ is a GW point with H(P ′) = 〈(d− 1)/2, d〉.

(4) Assume that d ≥ 5 and that d is even. We study C as an example of
Theorem 1.1. Let ι be an involution of C expressed as





1 0 0
0 −1 0
0 0 1



 .

(Note that ι = σ
d/2
Pout

, where σPout
is an automorphism belonging to

the outer Galois point Pout.) Considering that d is even, let C′ be the
curve given by the equation X̄Z̄d−1 + X̄d + Ȳ d/2 = 0 in the weighted
projective space P(1, 2, 1), where (X̄, Ȳ , Z̄) are weighted homogeneous
coordinates. Then, C′ is nonsingular. Let ϕ : C → C′ be a double
covering defined by (X : Y : Z) 7→ (X,Y 2, Z). Then, ϕ ◦ ι = ϕ.
Let P ′ := ϕ(P ). Because P is a ramification point of ϕ, according to
Lemma 2.2, we have that H(P ′) = 〈d/2, d− 1〉 and P ′ is a Weierstrass
point. Let f : C′ → P

1 be a morphism defined by (X̄, Ȳ , Z̄) 7→ (X̄2 :
Ȳ ). Then, f is a Galois covering of degree d − 1, and P ′ is a total
ramification point of f . Hence, P ′ is a weak GW point with d − 1 ∈
degGW(P ′) and H(P ′) = 〈d/2, d − 1〉. On the other hand, as the
morphism defined by (X̄, Ȳ , Z̄) 7→ (X̄ : Z̄), which is Φ|(d/2)P ′|, is a
Galois morphism of degree d/2, we have that P ′ is a GW point with
H(P ′) = 〈d/2, d− 1〉.

Example 3.2. Let C ⊂ P
2 be a Fermat curve defined by Xd + Y d + Zd = 0

(d ≥ 4). Then, there exist three outer Galois points for C, which are P1 := (0 :
0 : 1), P2 := (0 : 1 : 0), P3 := (1 : 0 : 0).

(1) We study C as an example of Theorem 2.3. The ramification points of
πP1

, πP2
, and πP3

are Q1j := ((−1)j/d : 1 : 0), Q2j := (1 : 0 : (−1)j/d),

and Q3j := (0 : (−1)j/d : 1), respectively, where j = 0, 1, . . . , d− 1. By
an argument similar to that in Example 3.1(1), we see that every Qij

is a pseudo-GW point with H(Qij) = 〈d− 1, d〉.
(2) Assume that d ≥ 5 and that d is even. We study C as an example of

Theorem 1.1. Let σPi
be an automorphism of C belonging to Pi and let

ιi := σ
d/2
Pi

. According to Lemma 4.3, a non-trivial involution such that
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Fix(σPi
) ∩ Fix(ιi) ∩ C 6= ∅ is only ιi. Let ϕi : C → C′

i be the double
covering obtained by ιi. Note that Fix(ιi) = Fix(σPi

) = {Pi} ∪ ℓi,
where ℓ1 : Z = 0, ℓ2 : Y = 0, ℓ3 : X = 0. Let Qi be a common
ramification point of πPi

and ϕi, i.e., Qi ∈ C ∩ ℓi, and Q′
i := ϕi(Qi).

Then, Q′
i is a GW point of C′

i with H(Q′
i) = 〈d/2, d− 1〉.

For example, let us consider the outer Galois point P1. We may
assume that σP1

is expressed as (2). Thus,

ι1 =





1 0 0
0 1 0
0 0 −1



 .

Let Q1 := ((−1)1/d : 1 : 0) ∈ C ∩ ℓ1. Considering that d is even, let C′
1

be the curve given by the equation X̄d+ Ȳ d+ Z̄d/2 = 0 in the weighted
projective space P(1, 1, 2), where (X̄, Ȳ , Z̄) are weighted homogeneous
coordinates. Then, C′

1 is nonsingular. Let ϕ1 : C → C′
1 be the double

covering obtained by (X : Y : Z) 7→ (X,Y, Z2). Then, ϕ1 ◦ ι1 = ϕ1.
Let Q′

1 := ϕ1(Q1) = ((−1)1/d, 1, 0). As Q1 is a ramification point of ϕ,
according to Lemma 2.2, we have that H(Q′

1) = 〈d/2, d− 1〉 and that
Q′

1 is a Weierstrass point. Let f : C′ → P
1 be the morphism defined

by (X̄, Ȳ , Z̄) 7→ (X̄ : Ȳ ). Then, f is a Galois covering of degree d/2,
and Q′

1 is a total ramification point of f . Hence, Q′
1 is a GW point

with H(Q′
1) = 〈d/2, d− 1〉.

(3) Assume that d ≥ 5 and that d is odd. We study C as an example of
Theorem 1.1. For an involution ι ∈ Aut(C), because ord(ι) = 2 and
the number of outer Galois points for C is three, we have that one of
the Galois points satisfies ι(Pi) = Pi. Note that Fix(σPi

) = {Pi} ∪ ℓi,
where ℓ1 : Z = 0, ℓ2 : Y = 0, ℓ3 : X = 0. As #(C ∩ ℓi) = d is odd,
there exists a point Q in Fix(σPi

) ∩ Fix(ι) ∩ C. Let ϕ : C → C′ be
the double covering obtained by ι and Q′ := ϕ(Q). Then, the point Q′

is either a GW point or a pseudo-GW point, respectively, of C′ with
H(Q′) := 〈(d− 1)/2, d〉 if d = 5 or d ≥ 7, respectively.

For example, let

ι :=





0 1 0
1 0 0
0 0 1



 .

Then, ι is an involution of C, and ι(P1) = P1. Because σP1
is expressed

as (2), we have that Fix(σPi
) ∩ Fix(ι) ∩ C = {Q = (−1 : 1 : 0)}. By

the projective transformation

T =





1 −1 0
1 1 0
0 0 1



 ,
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we can express that C : (X−Y )d+(X+Y )d+Zd = 0, P1 = (0 : 0 : 1),
Q = (0 : 1 : 0),

σP1
=





1 0 0
0 1 0
0 0 ζ



 and ι =





1 0 0
0 −1 0
0 0 1



 .

Let C′ be the curve given by the equation (X̄− Ȳ 1/2)d+(X̄+ Ȳ 1/2)d+
Z̄d = 0 in the weighted projective space P(1, 2, 1), where (X̄, Ȳ , Z̄) are
the weighted homogeneous coordinates. Note that the left side of the
equation will be a polynomial when expanded, because d is odd. (Note
that the point (0, 1, 0) is a singular point of P(1, 2, 1), C is nonsingular
at (0, 1, 0).) Let ϕ : C → C′ be the double covering defined by (X :
Y : Z) 7→ (X,Y 2, Z). Then, ϕ ◦ ι = ϕ. Let Q′ := ϕ(Q). Because
Q is a ramification point of ϕ, according to Lemma 2.2, we have that
H(Q′) = 〈(d−1)/2, d〉 and that Q′ is a Weierstrass point. Let f : C′ →
P
1 be the morphism obtained by (X̄, Ȳ , Z̄) 7→ (X̄2 : Ȳ ). Then, f is a

Galois covering of degree d and Q′ is a total ramification point of f .
Hence, Q′ is a weak GW point with H(Q′) = 〈(d − 1)/2, d〉.

If d ≥ 7, then it is clear thatQ′ is not a GW point, i.e., Φ|((d−1)/2)Q′| :

C′ → P
1 is not of the Galois type, as follows. Because every inflec-

tion point of C is a total inflection point, the ramification index of
every ramification point of πQ is equal to 2 except for Q. Thus, as
Φ|((d−1)/2)Q′| ◦ ϕ = πQ, the ramification index of every ramification
point is equal to 2 except for Q′. According to the Riemann–Hurwitz
formula, the number of ramification points of Φ|((d−1)/2)Q′| with rami-
fication index 2 is equal to d(d− 3)/2. If Φ|((d−1)/2)Q′| is of the Galois
type, then (d − 1)/4 is an integer and (d − 1)/4 divides d(d − 3)/2,
which is a contradiction except for the case d = 5. Hence, if d ≥ 7,
then Q′ is a pseudo-GW point. If d = 5, then Q′ is a GW point because
degΦ|((d−1)/2)Q′| = (d− 1)/2 = 2.

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. First, we separately discuss four cases
in which, for the first half of the theorem, d is odd or even and a Galois point
P is inner or outer. Lastly, we prove the latter half of the theorem.

Lemma 4.1. Let C be a plane curve of odd degree d ≥ 5 and P an inner

Galois point for C. Let σ be a generator of its Galois group, which is a cyclic

group. Then, σ(d−1)/2 is the unique involution of C.

Proof. We may assume that C, P , and σ are expressed as (1) and (2). Let ι

be an involution of C, i.e., ι ∈ Aut(C), ι 6= idC , and ι2 = idC . According to
Theorem 2.1(3), we have that ι(P ) = P . The line ℓX : X = 0 is the tangent line
at P for C; thus, ι(ℓX) = ℓX . Because Fix(σ) = {P} ∪ ℓZ , where ℓZ : Z = 0
and ι(P ) = P , we have that ι(ℓZ) = ℓZ ; hence, ι((0 : 1 : 0)) = (0 : 1 : 0).
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As #(C ∩ ℓZ) = d is odd and the order of ι equals two, there exists a point
Q ∈ C ∩ ℓZ such that ι(Q) = Q. We may assume that Q = (1 : 0 : 0) by a
suitable transformation retaining the expressions (1) and (2). Then,

ι =





−1 0 0
0 1 0
0 0 1



 ,





1 0 0
0 −1 0
0 0 1



 or





1 0 0
0 1 0
0 0 −1



 .

If ι is either the first or second matrix, then from ι∗C = C we infer that X

divides Fd; thus C is reducible, which is a contradiction. Hence, ι must be the
third matrix, and ι = σ(d−1)/2, which is the unique non-trivial involution of
C. �

Lemma 4.2. With the same notations and assumptions as in Lemma 4.1, let

ι := σ(d−1)/2, ϕ be a double covering C → C′ := C/ 〈ι〉 and P ′ := ϕ(P ). Then:

(1) H(P ′) = 〈(d− 1)/2, d〉;
(2) P ′ is a GW point;
(3) Φ|((d−1)/2)P ′| : C

′ → P
1 is a Galois covering and πP = Φ|((d−1)/2)P ′|◦ϕ.

Proof. According to Theorem 2.3(1) and Lemma 2.2, assertion (1) holds true.
The projection πP = Φ|(d−1)P | is a Galois covering, P is a total ramification

point of πP , and Gal(C/P1) = 〈σ〉. The subgroup 〈ι〉 is a normal subgroup of
Gal(C/P1). Hence, we conclude (2) and (3). �

Lemma 4.3. Let C be a plane curve of even degree d ≥ 5. Let P be an

outer Galois point for C and let σ be a generator of its Galois group, which

is a cyclic group. Then, ι := σd/2 is the unique involution of C such that

Fix(σ) ∩ Fix(ι) ∩ C 6= ∅.

Proof. First, we assume that C is not a projective equivalent to a Fermat
curve. We may assume that C, P , and σ are expressed as (1) and (2). Let
ι be an involution of C such that Fix(σ) ∩ Fix(ι) ∩ C 6= ∅. According to
Theorem 2.1(3), we have that ι(P ) = P . Because Fix(σ) ∩ Fix(ι) ∩ C 6= ∅,
Fix(σ) = {P}∪ℓZ, where ℓZ : Z = 0, and #(C∩ℓZ) = d is even, there exist two
points Q1, Q2 ∈ Fix(σ) ∩ Fix(ι) ∩C. We may assume that Q1 = (1 : 0 : 0) and
Q2 = (0 : 1 : 0) by a suitable transformation, thereby retaining the expressions
(1) and (2). Then,

ι =





−1 0 0
0 1 0
0 0 1



 ,





1 0 0
0 −1 0
0 0 1



 or





1 0 0
0 1 0
0 0 −1



 .

If ι is either the first or second matrix, then from ι∗C = C and Q1, Q2 ∈ C we
infer that X2 or Y 2 divides Fd; thus, C is singular, which is a contradiction.
Hence, ιmust be the third matrix, and ι = σd/2, which is the unique non-trivial
involution such that Fix(σ) ∩ Fix(ι) ∩C 6= ∅.

Assuming that C is a Fermat curve, that is, C is defined byXd+Y d+Zd = 0;
then, there exist three Galois points P1 := (0 : 0 : 1), P2 := (0 : 1 : 0), and
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P3 := (1 : 0 : 0). We may assume that P = P1 and that σ is expressed as (2).
Let ι be an involution of C such that Fix(σ) ∩ Fix(ι) ∩ C 6= ∅. If ι(P ) = P ,
then by an argument similar to that above, we have that ι = σd/2. If ι(P ) 6= P ,
then, because P1, P2 and P3 are all Galois points, we have that ι(P ) = P2 or
P3. Let us assume that ι(P ) = P2. Then, ι(P2) = P and ι(P3) = P3. Thus ι

must be

ι =





1 0 0
0 0 c

0 c−1 0



 ,

where c ∈ k \ {0}. However, Fix(σ) ∩ Fix(ι) ∩C = ∅, which is a contradiction.
Similarly, ι(P ) 6= P3. Therefore, in the case that C is a Fermat curve, a non-
trivial involution ι such that Fix(σ) ∩ Fix(ι) ∩ C 6= ∅ must be ι = σd/2, which
is unique. �

Lemma 4.4. With the same notations and assumptions as in Lemma 4.3, let

ι := σd/2, ϕ be a double covering C → C′ := C/ 〈ι〉 and P ′ := ϕ(P ). Then, for

a fixed point Q ∈ C of σ, Q′ := ϕ(Q) is a GW point with H(Q′) = 〈d/2, d− 1〉
and Φ|(d/2)Q′| : C

′ → P
1 is of the Galois type.

Proof. According to Theorem 2.3(2) and Lemma 2.2, we haveH(Q′) = 〈d/2, d−
1〉. Because πP = Φ|dQ| and 〈ι〉 is a normal subgroup of Gal(C/P1) = 〈σ〉, we
have that πP = Φ|d/2Q′| ◦ ϕ and Φ|d/2Q′| is of the Galois type. �

Lemma 4.5. Let C be a plane curve of even degree d ≥ 5, and let P be an

inner Galois point for C. Assume that there exists an involution ι. Then,

ι(P ) = P .

Proof. According to Theorem 2.1, the point P is only an inner Galois point;
thus, ι(P ) = P . �

Lemma 4.6. With the same notations and assumptions as in Lemma 4.5, let

ϕ : C → C′ := C/〈ι〉 be the double covering obtained by ι, and P ′ := ϕ(P ).
Then:

(1) P ′ is a weak GW point, and H(P ′) = 〈d/2, d− 1〉;
(2) there exists a Galois covering f : C′ → P

1 of degree d− 1 such that P ′

is a total ramification point of f .

Proof. We may assume that C, P , and σ are expressed as (1) and (2). Following
Theorem 2.1(3), we have that ι(P ) = P . Because the line ℓX : X = 0 is the
tangent line at P for C, ι(ℓX) = ℓX . As Fix(σ) = {P} ∪ ℓZ , where ℓZ : Z = 0,
and ι(P ) = P , we have that ι(ℓZ) = ℓZ . Hence,

ι =





a 0 0
b c 0
0 0 1



 ,
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where a, b, c ∈ k. Thus, ισ = σι. By taking a suitable projective transfor-
mation, we can diagonalize ι such that expressions (1) and (2) are retained.
Because ι2 = idC ,

ι =





−1 0 0
0 1 0
0 0 1



 ,





1 0 0
0 −1 0
0 0 1



 or





1 0 0
0 1 0
0 0 −1



 .

Because ι∗C = C, if ι is the first matrix, then we infer that C is reducible,
which is a contradiction. Furthermore, ι cannot be the third matrix, because
ι∗C = C. Hence, ι must be the second matrix. Because ι∗C = C again,
fd(X,−Y ) = fd(X,Y ). Namely, there exists a polynomial g(X̄, Ȳ ) such that
g(X,Y 2) = fd(X,Y ). Let C′ be the curve defined by X̄Z̄d−1 + g(X̄, Ȳ ) = 0
in P(1, 2, 1), where (X̄, Ȳ , Z̄) are the weighted homogeneous coordinates of
P(1, 2, 1). We have that C′ is nonsingular, C′ ∼= C/〈ι〉, ϕ : (X : Y : Z) 7→
(X,Y 2, Z), and P ′ = ϕ(P ) = (0, 0, 1). Because P is a ramification point of ϕ,
according to Theorem 2.3(1) and Lemma 2.2, we have thatH(P ′) = 〈d/2, d−1〉.
Let f : C′ → P

1 be the morphism defined by (X̄, Ȳ , Z̄) 7→ (X̄2 : Ȳ ). Then,
f is a Galois covering of degree d − 1, and P ′ is its total ramification point.
Therefore, P ′ is a weak GW point of C′ with H(P ′) = 〈d/2, d− 1〉. �

Lemma 4.7. Let C be a plane curve of odd degree d ≥ 5, and let P be an

outer Galois point for C. Let σ be a generator of its Galois group. Assume

that there exists an involution ι such that ι(P ) = P . Then, Fix(σ)∩Fix(ι)∩C

consists of one point.

Proof. We may assume that C, P , and σ are expressed as (1) and (2). Then,
Fix(σ) ∩ C = ℓZ ∩ C, where ℓZ : Z = 0, and these d points are total inflexion
points. Because C ∩ lZ = {Q ∈ C | Q is a total inflexion point and P ∈ TQC }
and ι(P ) = P , we have that ι(C∩lZ) = C∩lZ . As d is odd, Fix(σ)∩Fix(ι)∩C 6=
∅. Let Q ∈ Fix(σ) ∩ Fix(ι) ∩C. By changing the coordinates suitably, we may
assume that Q = (0 : 1 : 0). Because ι2 = idC , ι(P ) = P , ι(Q) = Q and
ι(lZ) = lZ , we have that

(3) ι =





1 0 0
c −1 0
0 0 1



 ,





−1 0 0
c 1 0
0 0 1



 or





1 0 0
0 1 0
0 0 −1



 ,

where c ∈ k. If ι is the third matrix, then ι∗C 6= C, which is a contradiction.
Hence, ι|lZ 6= id. Because d is odd and Q = (0 : 1 : 0) ∈ Fix(ι) ∩ C, we have
that Fix(σ) ∩ Fix(ι) ∩C = {Q}. �

Lemma 4.8. With the same notations and assumptions as in Lemma 4.7, let

ϕ : C → C′ := C/〈ι〉 be the double covering obtained by ι, and let Q be the

element of Fix(σ) ∩ Fix(ι) ∩ C. Then:

(1) Q′ := ϕ(Q) is a weak GW point, and H(Q′) = 〈(d− 1)/2, d〉;



84 J. KOMEDA AND T. TAKAHASHI

(2) there exists a Galois covering f : C′ → P
1 of degree d such that Q′ is

a total ramification point of f .

Proof. We may assume that C, P , and σ are expressed as (1) and (2). Accord-
ing to the proof of Lemma 4.7, we may assume that Q = (0 : 1 : 0) in which
case ι can either be expressed as the first or second matrix of (3). Because
ισ = σι, by changing the coordinates in a suitable manner, we can diagonalize
ι and we may assume that

(4) ι =





1 0 0
0 −1 0
0 0 1



 or





−1 0 0
0 1 0
0 0 1



 .

Because Fix(σ) ∩ Fix(ι) ∩ C = {Q}, we have that (1 : 0 : 0) 6∈ C. As ι∗C = C,
this indicates that ι must be the first matrix of (4), and C is expressed as
Zd + g(X,Y 2) = 0, where g(X,Y 2) is a homogeneous polynomial of degree d.

Let C′ be the curve in P(1, 2, 1) defined by Z̄d+g(X̄, Ȳ ) = 0, where (X̄, Ȳ , Z̄)
are the weighted homogeneous coordinates. Considering that C′ is nonsingular,
we have that C′ ∼= C/〈ι〉 and ϕ : (X : Y : Y ) 7→ (X,Y 2, Z). Because Q is a
ramification point of ϕ, according to Lemma 2.2, we have that H(Q′) = 〈(d−
1)/2, d〉. Let f : C′ → P

1 be the morphism obtained by (X̄, Ȳ , Z̄) 7→ (X̄2 : Ȳ ).
Then, f is a Galois covering of degree d and Q′ is its total ramification point.
Therefore, Q′ is a weak GW point of C′ with H(P ′) = 〈(d− 1)/2, d〉. �

According to Lemmas 4.1–4.8, we conclude the former part of Theorem 1.1.

Lemma 4.9. Let C′ be a curve and P ′ a weak GW point.

(1) If H(P ′) = 〈r, 2r + 1〉 (r ≥ 2) and P ′ is a GW point, then there exists

a plane curve C of degree d = 2r + 1, an inner Galois point P , and a

double covering ϕ : C → C′ such that P ′ = ϕ(P ).
(2) If H(P ′) = 〈r, 2r − 1〉 (r ≥ 3) and P ′ is a GW point, then there exists

a plane curve C of degree d = 2r, an outer Galois point P , and a

double covering ϕ : C → C′ such that P ′ = ϕ(Q), where Q is a total

ramification point of πP and ϕ.

(3) If H(P ′) = 〈r, 2r−1〉 (r ≥ 3) and P ′ is a weak GW point with 2r−1 ∈
degGW(P ′), then there exists a plane curve C of degree d = 2r, an

inner Galois point P , and a double covering ϕ : C → C′ such that

P ′ = ϕ(P ).
(4) If H(P ′) = 〈r, 2r+1〉 (r ≥ 2) and P ′ is a weak GW point with 2r+1 ∈

degGW(P ′), then there exists a plane curve C of degree d = 2r + 1,
an outer Galois point P and a double covering ϕ : C → C′ such that

P ′ = ϕ(Q), where Q is a total ramification point of πP and ϕ.

Proof. We prove assertion (1). Let f : C′ → P
1 be a Galois covering of degree

r with P ′ as its total ramification point. According to Theorem 2.2, we may
assume that k(C′) = k(u, v), f∗(k(P1)) = k(u), and the minimal equation of v

is vr =
∏2r+1

i=1 (u − di), where di ∈ k. Let C be the plane curve given by the
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equation XZd−1 =
∏d

i=1(X − diY ), where d = 2r + 1. Then, C is nonsingular
and P := (0 : 0 : 1) is an inner Galois point. Moreover, we have an involution
ι := σ(d−1)/2, where σ is an automorphism of C belonging to the Galois point
P . We see that the natural morphism ϕ : C → C/〈ι〉 is a double covering, C/〈ι〉
is isomorphic to C′, and ϕ(P ) = P ′. Indeed, C/〈ι〉 is birationally equivalent to
the curve

x̄z̄(d−1)/2 =

d
∏

i=1

(x̄− diȳ)

in the weighted projective space P(1, 1, 2), and Φ|(d−1)/2ϕ(P )| is expressed as
(x̄, ȳ, z̄) 7→ (x̄ : ȳ), which induces the extension of function fields k(u, v)/k(u),
where u = x̄/ȳ and v = z̄/ȳ2.

By an argument similar to that above, we can prove assertions (2)–(4). �

By Lemma 4.9, we conclude the latter part of Theorem 1.1.
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