• Title/Summary/Keyword: unit disc

Search Result 188, Processing Time 0.02 seconds

SOME PROPERTIES OF CERTAIN CLASSES OF FUNCTIONS WITH BOUNDED RADIUS ROTATIONS

  • NOOR, KHALIDA INAYAT
    • Honam Mathematical Journal
    • /
    • v.19 no.1
    • /
    • pp.97-105
    • /
    • 1997
  • Let $R_k({\alpha})$, $0{\leq}{\alpha}<1$, $k{\geq}2$ denote certain subclasses of analytic functions in the unit disc E with bounded radius rotation. A function f, analytic in E and given by $f(z)=z+{\sum_{m=2}^{\infty}}a_m{z^m}$, is said to be in the family $R_k(n,{\alpha})n{\in}N_o=\{0,1,2,{\cdots}\}$ and * denotes the Hadamard product. The classes $R_k(n,{\alpha})$ are investigated and same properties are given. It is shown that $R_k(n+1,{\alpha}){\subset}R_k(n,{\alpha})$ for each n. Some integral operators defined on $R_k(n,{\alpha})$ are also studied.

  • PDF

UPPER BOUNDS OF SECOND HANKEL DETERMINANT FOR UNIVERSALLY PRESTARLIKE FUNCTIONS

  • Ahuja, Om;Kasthuri, Murugesan;Murugusundaramoorthy, Gangadharan;Vijaya, Kaliappan
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1019-1030
    • /
    • 2018
  • In [12,13] the researchers introduced universally convex, universally starlike and universally prestarlike functions in the slit domain ${\mathbb{C}}{\backslash}[1,{\infty})$. These papers extended the corresponding notions from the unit disc to other discs and half-planes containing the origin. In this paper, we introduce universally prestarlike generalized functions of order ${\alpha}$ with ${\alpha}{\leq}1$ and we obtain upper bounds of the second Hankel determinant ${\mid}a_2a_4-a^2_3{\mid}$ for such functions.

ON A POSITIVE SUBHARMONIC BERGMAN FUNCTION

  • Kim, Jung-Ok;Kwon, Ern-Gun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.623-632
    • /
    • 2010
  • A holomorphic function F defined on the unit disc belongs to $A^{p,{\alpha}}$ (0 < p < $\infty$, 1 < ${\alpha}$ < $\infty$) if $\int\limits_U|F(z)|^p \frac{1}{1-|z|}(1+log)\frac{1}{1-|z|})^{-\alpha}$ dxdy < $\infty$. For boundedness of the composition operator defined by $C_{fg}=g{\circ}f$ mapping Blochs into $A^{p,{\alpha}$ the following (1) is a sufficient condition while (2) is a necessary condition. (1) $\int\limits_o^1\frac{1}{1-r}(1+log\frac{1}{1-r})^{-\alpha}M_p(r,\lambda{\circ}f)^p\;dr$ < $\infty$ (2) $\int\limits_o^1\frac{1}{1-r}(1+log\frac{1}{1-r})^{-\alpha+p}(1-r)^pM_p(r,f^#)^p\;dr$ < $\infty$.

SUFFICIENT CONDITIONS FOR UNIVALENCE AND STUDY OF A CLASS OF MEROMORPHIC UNIVALENT FUNCTIONS

  • Bhowmik, Bappaditya;Parveen, Firdoshi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.999-1006
    • /
    • 2018
  • In this article we consider the class ${\mathcal{A}}(p)$ which consists of functions that are meromorphic in the unit disc $\mathbb{D}$ having a simple pole at $z=p{\in}(0,1)$ with the normalization $f(0)=0=f^{\prime}(0)-1$. First we prove some sufficient conditions for univalence of such functions in $\mathbb{D}$. One of these conditions enable us to consider the class ${\mathcal{A}}_p({\lambda})$ that consists of functions satisfying certain differential inequality which forces univalence of such functions. Next we establish that ${\mathcal{U}}_p({\lambda}){\subsetneq}{\mathcal{A}}_p({\lambda})$, where ${\mathcal{U}}_p({\lambda})$ was introduced and studied in [2]. Finally, we discuss some coefficient problems for ${\mathcal{A}}_p({\lambda})$ and end the article with a coefficient conjecture.

Antibacterial Activity of Bioconverted Linoleic Acid Produced by Pseudomonas aeruginosa PR3

  • Shin, Seung-Young;Bajpai, Vivek K.;Hou, Ching T.;Choi, Ung-Kyu;Kim, Hak-Ryul;Kang, Sun-Chul
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.167-169
    • /
    • 2005
  • Crude extract of bioconverted linoleic acid using Pseudomonas aeruginosa PR3 was evaluated for its antibacterial activity against food-borne pathogenic bacteria. Crude extract showed antibacterial activity against four Gram-positive bacteria, Staphylococcus aureus (ATCC 6538), S. aureus (KCTC 1916), Listeria monocytogenes (ATCC 19166), and Bacillus subtilis (ATCC 6633), and one Gramnegative bacterium, Pseudomonas aeruginosa (KCTC 2004), with minimum inhibitory concentrations ranging from 750 to $1,500\;{\mu}g{\cdot}ml^{-1}$. S. aureus and B. subtilis were selected for growth inhibition assays with bioconverted linoleic acid. Major antibacterial effects occurred at lag phase.

ON A CERTAIN CLASS OF p-VALENT UNIFORMLY CONVEX FUNCTIONS USING DIFFERENTIAL OPERATOR

  • Lee, S.K.;Khairnar, S.M.;Rajas, S.M.
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • In this paper, using differential operator, we have introduce new class of p-valent uniformly convex functions in the unit disc U = {z : |z| < 1} and obtain the coefficient bounds, extreme bounds and radius of starlikeness for the functions belonging to this generalized class. Furthermore, partial sums $f_k(z)$ of functions $f(z)$ in the class $S^*({\lambda},{\alpha},{\beta})$ are considered. The various results obtained in this paper are sharp.

BEST CONSTANT IN ZYGMUND'S INEQUALITY AND RELATED ESTIMATES FOR ORTHOGONAL HARMONIC FUNCTIONS AND MARTINGALES

  • Osekowski, Adam
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.659-670
    • /
    • 2012
  • For any $K$ > $2/{\pi}$ we determine the optimal constant $L(K)$ for which the following holds. If $u$, $tilde{u}$ are conjugate harmonic functions on the unit disc with $\tilde{u}(0)=0$, then $$ {\int}_{-\pi}^{\pi}{\mid}\tilde{u}(e^{i\phi}){\mid}\frac{d{\phi}}{2{\pi}}{\leq}K{\int}_{-\pi}^{\pi}{\mid}u(e^{i{\phi}}){\mid}{\log}^+{\mid}u(e^{i{\phi}}){\mid}\frac{d{\phi}}{2{\pi}}+L(K).$$ We also establish a related estimate for orthogonal harmonic functions given on Euclidean domains as well as an extension concerning orthogonal martingales under differential subordination.

ON THE CLOSED RANGE COMPOSITION AND WEIGHTED COMPOSITION OPERATORS

  • Keshavarzi, Hamzeh;Khani-Robati, Bahram
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.217-227
    • /
    • 2020
  • Let ψ be an analytic function on 𝔻, the unit disc in the complex plane, and φ be an analytic self-map of 𝔻. Let 𝓑 be a Banach space of functions analytic on 𝔻. The weighted composition operator Wφ,ψ on 𝓑 is defined as Wφ,ψf = ψf ◦ φ, and the composition operator Cφ defined by Cφf = f ◦ φ for f ∈ 𝓑. Consider α > -1 and 1 ≤ p < ∞. In this paper, we prove that if φ ∈ H(𝔻), then Cφ has closed range on any weighted Dirichlet space 𝒟α if and only if φ(𝔻) satisfies the reverse Carleson condition. Also, we investigate the closed rangeness of weighted composition operators on the weighted Bergman space Apα.

ESTIMATES FOR SECOND NON-TANGENTIAL DERIVATIVES AT THE BOUNDARY

  • Gok, Burcu;Ornek, Bulent Nafi
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.689-707
    • /
    • 2017
  • In this paper, a boundary version of Schwarz lemma is investigated. We take into consideration a function f(z) holomorphic in the unit disc and f(0) = 0, f'(0) = 1 such that ${\Re}f^{\prime}(z)$ > ${\frac{1-{\alpha}}{2}}$, -1 < ${\alpha}$ < 1, we estimate a modulus of the second non-tangential derivative of f(z) function at the boundary point $z_0$ with ${\Re}f^{\prime}(z_0)={\frac{1-{\alpha}}{2}}$, by taking into account their first nonzero two Maclaurin coefficients. Also, we shall give an estimate below ${\mid}f^{{\prime}{\prime}}(z_0){\mid}$ according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and $z_1{\neq}0$. The sharpness of these inequalities is also proved.

SOME PROPERTIES OF INVARIANT SUBSPACES IN BANACH SPACES OF ANALYTIC FUNCTIONS

  • Hedayatian, K.;Robati, B. Khani
    • Honam Mathematical Journal
    • /
    • v.29 no.4
    • /
    • pp.523-533
    • /
    • 2007
  • Let $\cal{B}$ be a reflexive Banach space of functions analytic on the open unit disc and M be an invariant subspace of the multiplication operator by the independent variable, $M_z$. Suppose that $\varphi\;\in\;\cal{H}^{\infty}$ and $M_{\varphi}$ : M ${\rightarrow}$ M, defined by $M_{\varphi}f={\varphi}f$, is the operator of multiplication by ${\varphi}$. We would like to investigate the spectrum and the essential spectrum of $M_{\varphi}$ and we are looking for the necessary and sufficient conditions for $M_{\varphi}$ to be a Fredholm operator. Also we give a sufficient condition for a sequence $\{w_n\}$ to be an interpolating sequence for $\cal{B}$. At last the commutant of $M_{\varphi}$ under certain conditions on M and ${\varphi}$ is determined.