UPPER BOUNDS OF SECOND HANKEL DETERMINANT FOR UNIVERSALLY PRESTARLIKE FUNCTIONS

Om Ahuja, Murugesan Kasthuri, Gangadharan Murugusundaramoorthy, and Kaliappan Vijaya

Abstract

In $[12,13]$ the researchers introduced universally convex, universally starlike and universally prestarlike functions in the slit domain $\mathbb{C} \backslash[1, \infty)$. These papers extended the corresponding notions from the unit disc to other discs and half-planes containing the origin. In this paper, we introduce universally prestarlike generalized functions of order α with $\alpha \leq 1$ and we obtain upper bounds of the second Hankel determinant $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for such functions.

1. Introduction

Let $\mathcal{H}(\Omega)$ denote the set of all analytic functions in a domain Ω. Suppose Ω contains the origin and $\mathcal{H}_{0}(\Omega)$ stands for the set of all functions $f \in \mathcal{H}(\Omega)$ with $f(0)=1$ and also let

$$
\mathcal{H}_{1}(\Omega)=\left\{z f: f \in \mathcal{H}_{0}(\Omega)\right\} .
$$

If $\Omega=\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ is the unit disc, we write $\mathcal{H} \equiv \mathcal{H}(\mathbb{U}), \mathcal{H}_{0} \equiv \mathcal{H}_{0}(\mathbb{U})$ and $\mathcal{H}_{1} \equiv \mathcal{H}_{1}(\mathbb{U})$. Let the Hadamard (or convolution) product of two functions

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}, z \in \mathbb{U}
$$

in $\mathcal{H}_{0}(\Omega)$ is defined as

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n} .
$$

A function $f \in \mathcal{H}_{1}$ is called a starlike function of order $\alpha(0 \leq \alpha \leq 1)$ if

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad(z \in \mathbb{U})
$$

and the set of such functions is denoted by \mathcal{S}_{α}.

Received March 6, 2016; Revised April 22, 2018; Accepted June 26, 2018.
2010 Mathematics Subject Classification. Primary 30C45.
Key words and phrases. analytic functions, prestarlike functions, universally prestarlike functions, second Hankel determinant.

Due to Ruscheweyh [10], for $f \in \mathcal{H}_{1}$, let us denote by \mathcal{R}_{α}, the set of all prestarlike functions of order $\alpha(\alpha \leq 1)$ in \mathbb{U} satisfying the criteria

$$
\begin{cases}\frac{z}{(1-z)^{2-2 \alpha}} * f \in \mathcal{S}_{\alpha}, & \alpha<1, \\ \Re\left(\frac{f(z)}{z}\right)>\frac{1}{2}, & \alpha=1, z \in \mathbb{U}\end{cases}
$$

where

$$
\frac{z}{(1-z)^{2-2 \alpha}}=z+\sum_{n=2}^{\infty} \mathcal{C}(\alpha, n) z^{n}
$$

is a well-known extremal function in \mathcal{S}_{α} and

$$
\mathcal{C}(\alpha, n)=\frac{\prod_{k=2}^{n}(k-2 \alpha)}{(n-1)!} ; \quad(n \in \mathbb{N} \backslash\{1\}, \mathbb{N}:=\{1,2,3, \ldots\})
$$

Note that $\mathcal{C}(\alpha, n)$ is a decreasing function of α with

$$
\lim _{n \rightarrow \infty} \mathcal{C}(\alpha, n)= \begin{cases}\infty & \text { if } \alpha<\frac{1}{2} \\ 1 & \text { if } \alpha=\frac{1}{2} \\ 0 & \text { if } \alpha>\frac{1}{2}\end{cases}
$$

While working with prestarlike functions and convolutions, the following notation turned out to be useful:

$$
\left(D^{n} f\right)(z)=\frac{z}{(1-z)^{n}} * f
$$

where $n \in \mathbb{N}_{0}=\{0,1,2,3, \ldots\}$ and therefore we have $D^{n+1} f=\frac{z}{n!}\left(z^{n-1} f\right)^{(n)}$ for $n \in \mathbb{N}_{0}$. Using this operator we find that a function $f \in \mathcal{H}_{1}$ is prestarlike of order $\alpha \leq 1$ if and only if

$$
\frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f} \in \mathcal{P}
$$

where

$$
\mathcal{P}=\left\{g \in \mathcal{H}_{0}: \Re(g(z))>\frac{1}{2}, z \in \mathbb{U}\right\}
$$

or, equivalently, by Herglotz formula,

$$
g \in \mathcal{P} \Leftrightarrow g(z)=\int_{0}^{1} \frac{d \mu(t)}{1-e^{-i t} z}
$$

where μ is a probability measure on $[0,2 \pi]$.
The notion of prestarlike functions of order α has recently been extended from the unit disc \mathbb{U} to other discs and half-planes containing the origin (see [11-13]). Define one such disc $\Omega_{\gamma, \rho}$ by

$$
\Omega_{\gamma, \rho}=\left\{\omega_{\gamma, \rho}(z): z \in \mathbb{U}\right\}
$$

where $\gamma \in \mathbb{C} \backslash\{0\}$ and $\rho \in[0,1]$ are two unique parameters and $\omega_{\gamma, \rho}(z)=\frac{\gamma z}{1-\rho z}$. Note that $1 \notin \Omega_{\gamma, \rho}$ if and only if $|\gamma+\rho| \leq 1$. For $\alpha \leq 1$, and for some admissible pair (γ, ρ), we define

$$
\mathcal{R}_{\alpha}\left(\Omega_{\gamma, \rho}\right)=\left\{f \in \mathcal{H}_{1}\left(\Omega_{\gamma, \rho}\right): \frac{1}{\gamma} f\left(\omega_{\gamma, \rho}(z)\right) \in \mathcal{R}_{\alpha}\right\}
$$

where $\mathcal{H}_{1}\left(\Omega_{\gamma, \rho}\right)=\left\{z f: f \in \mathcal{H}_{0}\left(\Omega_{\gamma, \rho}\right)\right.$ with $\left.f(0)=1\right\}$. A function f in $\mathcal{R}_{\alpha}\left(\Omega_{\gamma, \rho}\right)$ is called prestarlike of order α in $\Omega_{\gamma, \rho}$ (see [12]).
Definition 1 ([13]). Let $\alpha \leq 1$ and $\Lambda=\mathbb{C} \backslash[1, \infty)$. A function $f \in \mathcal{H}_{1}(\Lambda)$ is called universally prestarlike of order α in Λ if and only if f is prestarlike of order α in all sets $\omega_{\gamma, \rho}$ with $|\gamma+\rho| \leq 1$. Denote the set of all universally prestarlike functions in Λ by \mathcal{R}_{α}^{u}.

Due to Ma-Minda [8] we state the following subordination principle:
Definition 2. Suppose ϕ is an analytic function such that
(1) $\Re(\phi)>0$ in \mathbb{U},
(2) $\phi(0)=1, \phi^{\prime}(0)>0$,
(3) ϕ maps \mathbb{U} onto a region starlike with respect to 1 and symmetric with respect to the real axis.

For $\alpha \leq 1$ and a function $f \in \mathcal{H}_{1}(\Lambda)$, we let $\mathcal{R}_{\alpha}^{u}(\phi)$ be the generalized class of universally prestarlike functions satisfying the condition

$$
\begin{equation*}
\frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f} \prec \phi(z), \tag{1}
\end{equation*}
$$

where \prec denotes the subordination and ϕ is an analytic function given by Definition 2. Note that for different choices of ϕ, the class $\mathcal{R}_{\alpha}^{u}(\phi)$ gives rise to several known and unknown classes of universally prestarlike functions of order α as given in the following example.

Example 1.1. If $\alpha \leq 1$, and $f \in \mathcal{H}_{1}(\Lambda)$, then

$$
\begin{equation*}
f \in \mathcal{R}_{\alpha}^{u}(A, B) \Longleftrightarrow \frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f} \prec \frac{1+A z}{1+B z}, \quad(-1 \leq B<A \leq 1) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
f \in \mathcal{R}_{\alpha}^{u}(\beta) \Longleftrightarrow \frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f} \prec \frac{1+(1-2 \beta) z}{1-z}, \quad(0 \leq \beta<1) . \tag{3}
\end{equation*}
$$

In particular $\mathcal{R}_{\frac{1}{2}}^{u}(1,-1)=\mathcal{S}^{*}$ is the class of starlike univalent functions.
Recall that the Hankel determinants $H_{q}(n)(n=1,2,3, \ldots ; q=1,2, \ldots)$ of the functions $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, a_{1}=1$ are defined by

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \ldots & a_{n+2 q-2}
\end{array}\right| .
$$

In particular,

$$
H_{2}(1)=\left|\begin{array}{ll}
a_{1} & a_{2} \\
a_{2} & a_{3}
\end{array}\right|=a_{1} a_{3}-a_{2}^{2}
$$

and

$$
H_{2}(2)=\left|\begin{array}{ll}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right|=a_{2} a_{4}-a_{3}^{2}
$$

For more details on Hankel determinants, one may refer to the papers [4-7,9,17].
Though there has been an increasing interest to study the functional $H_{2}(1)$ (that is, $a_{1} a_{3}-a_{2}^{2}$) for certain classes of universally prestarlike functions (see [14-16]) and in particular, the Fekete and Szegö estimates of $\left|a_{3}-\mu a_{2}^{2}\right|$ (see [2]), the study of the functional $H_{2}(2)$ (that is, $a_{2} a_{4}-a_{3}^{2}$) for universally prestarlike functions is not yet known. The main purpose of this paper is to obtain the upper bounds of Hankel determinant $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for functions $f \in \mathcal{R}_{\alpha}^{\mu}(\phi)$.

1.1. Preliminary results

To prove our main results, we state the following lemmas.
Lemma 1.2 (see [1, p. 41]). Let \mathbf{P} be the class of all analytic functions p of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \tag{4}
\end{equation*}
$$

satisfying $\Re(p(z))>0(z \in \mathbb{U})$ and $p(0)=1$. Then

$$
\left|p_{n}\right| \leq 2(n=1,2,3, \ldots)
$$

This inequality is sharp for each n. In particular, equality holds for all n for the function

$$
p(z)=\frac{1+z}{1-z}=1+\sum_{n=1}^{\infty} 2 z^{n}
$$

Lemma 1.3 (see [6]). If the function $p \in \mathbf{P}$ is given by (4), then

$$
\begin{equation*}
2 p_{2}=p_{1}^{2}+x\left(4-p_{1}^{2}\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
4 p_{3}=p_{1}^{3}+2\left(4-p_{1}^{2}\right) p_{1} x-p_{1}\left(4-p_{1}^{2}\right) x^{2}+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) z \tag{6}
\end{equation*}
$$

for some x, z with $|x| \leq 1,|z| \leq 1$ and $p_{1} \in[0,2]$.
Lemma 1.4 ([3]). The power series for a function p given in (4) converges in \mathbb{U} to a function in \mathbf{P} if and only if the Toeplitz determinants

$$
D_{n}=\left|\begin{array}{ccccc}
2 & p_{1} & p_{2} & \cdots & p_{n} \tag{7}\\
p_{-1} & 2 & p_{1} & \cdots & p_{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
p_{-n} & p_{-n+1} & p_{-n+2} & \cdots & 2
\end{array}\right|, \quad n=1,2,3, \ldots
$$

and $p_{-k}=\overline{p_{k}}$, are all nonnegative. They are strictly positive except for

$$
p(z)=\sum_{k=1}^{m} \rho_{k} p_{0}\left(e^{i t_{k} z}\right), \rho_{k}>0, t_{k} \text { real }
$$

and $t_{k} \neq t_{j}$ for $k \neq j$; in this case $D_{n}>0$ for $n<m-1$ and $D_{n}=0$ for $n \geq m$.

This necessary and sufficient condition is due to Caratheodory and Toeplitz and can be found in [3].

2. Coefficient bounds for the function class $\mathcal{R}_{\alpha}^{u}(\phi)$

In this section we obtain the upper bounds of the Hankel determinant

$$
\left|a_{2} a_{4}-a_{3}^{2}\right|
$$

for $f \in \mathcal{R}_{\alpha}^{u}(\phi)$. Let

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}=\int_{0}^{1} \frac{d \mu(t)}{1-t z},
$$

where

$$
a_{k}=\int_{0}^{1} t^{k} d \mu(t)
$$

$\mu(t)$ is a probability measure on $[0,1]$.
Theorem 2.1. Let $f \in \mathcal{R}_{\alpha}^{u}(\phi)$ be given by

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad\left(a_{0}=0 \text { and } a_{1}=1\right) \tag{8}
\end{equation*}
$$

and suppose ϕ, defined by Definition 2, is of the form

$$
\begin{equation*}
\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots \quad\left(B_{1}>0\right) . \tag{9}
\end{equation*}
$$

(i) If B_{1}, B_{2} and B_{3} satisfy the conditions

$$
\begin{gathered}
\quad(2-2 \alpha)\left|B_{2}\right| \leq B_{1}-(1-\alpha)(1-2 \alpha) B_{1}^{2} \\
\left|2(3-2 \alpha) B_{1} B_{3}-(2-2 \alpha)^{2} B_{1}^{4}-(4-2 \alpha) B_{2}^{2}\right| \\
+(2-2 \alpha)(1-2 \alpha) B_{1}^{2}\left|B_{2}\right|-(4-2 \alpha) B_{1}^{2} \leq 0
\end{gathered}
$$

then the second Hankel determinant satisfies

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{B_{1}^{2}}{(3-2 \alpha)^{2}}
$$

(ii) If B_{1}, B_{2} and B_{3} satisfy the conditions

$$
\begin{gathered}
(2-2 \alpha)\left|B_{2}\right| \geq B_{1}-(1-\alpha)(1-2 \alpha) B_{1}^{2} \\
\left|2(3-2 \alpha) B_{1} B_{3}-(2-2 \alpha)^{2} B_{1}^{4}-(4-2 \alpha) B_{2}^{2}\right|-(2-2 \alpha) B_{1}\left|B_{2}\right| \\
-(3-2 \alpha) B_{1}^{2}+(1-\alpha)(1-2 \alpha)\left\{2 B_{1}^{2}\left|B_{2}\right|+B_{1}^{3}\right\} \geq 0
\end{gathered}
$$

(or) the conditions

$$
(2-2 \alpha)\left|B_{2}\right| \leq B_{1}-(1-\alpha)(1-2 \alpha) B_{1}^{2}
$$

$\left|(3-2 \alpha) B_{1} B_{3}-2(1-\alpha)^{2} B_{1}^{4}-(2-\alpha) B_{2}^{2}\right|+(1-\alpha)(1-2 \alpha) B_{1}^{2}\left|B_{2}\right|-(2-\alpha) B_{1}^{2} \geq 0$, then the second Hankel determinant satisfies

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq & \frac{1}{(3-2 \alpha)^{2}(4-2 \alpha)}\left[2(1-\alpha)^{2} B_{1}^{4}+(2-\alpha)\left|B_{2}\right|^{2}\right. \tag{10}\\
& \left.-(3-2 \alpha) B_{1}\left|B_{3}\right|-(1-\alpha)(1-2 \alpha) B_{1}^{2}\left|B_{2}\right|\right]
\end{align*}
$$

(iii) If B_{1}, B_{2} and B_{3} satisfy the conditions

$$
\begin{gathered}
(2-2 \alpha)\left|B_{2}\right|>B_{1}-(1-\alpha)(1-2 \alpha) B_{1}^{2} \\
\left|4(3-2 \alpha) B_{1} B_{3}-2(2-2 \alpha)^{2} B_{1}^{4}-2(4-2 \alpha) B_{2}^{2}\right|-2(2-2 \alpha) B_{1}\left|B_{2}\right| \\
-2(3-2 \alpha) B_{1}^{2}+(2-2 \alpha)(1-2 \alpha) B_{1}^{2}\left(2\left|B_{2}\right|+B_{1}\right) \leq 0
\end{gathered}
$$

then the second Hankel determinant satisfies

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{B_{1}^{2}}{(3-2 \alpha)^{2}(4-2 \alpha)}\left(\frac{M}{N}\right)
$$

where

$$
\begin{aligned}
M= & 8(3-2 \alpha) B_{1}\left[(2-2 \alpha) B_{2}-(4-2 \alpha)\left|B_{3}\right|\right]-4(2-2 \alpha)(1-2 \alpha) B_{1}^{2}\left[2\left|B_{2}\right|\right. \\
& \left.+(3-2 \alpha) B_{1}\right]+16\left|B_{2}\right|^{2}(3-2 \alpha)-4 B_{1}^{2}\left(4 \alpha^{2}-12 \alpha+9\right) \\
& +(2-2 \alpha)^{2} B_{1}^{4}\left(15-8 \alpha-4 \alpha^{2}\right), \\
N= & 4(2-2 \alpha) B_{1}^{2}\left[(2-2 \alpha) B_{1}^{2}-1\right]-8 B_{1}\left[(3-2 \alpha)\left|B_{3}\right|+(2-2 \alpha)\left|B_{2}\right|\right] \\
& -4(2-2 \alpha)(1-2 \alpha) B_{1}^{2}\left(\left|B_{2}\right|-B_{1}\right)-4(4-2 \alpha)\left|B_{2}\right|^{2} .
\end{aligned}
$$

Proof. Since $f \in \mathcal{R}_{\alpha}^{u}(\phi)$, there exists a Schwarz function ω, analytic in \mathbb{U} with $\omega(0)=0$ and $|\omega(z)|<1$ in \mathbb{U} such that

$$
\begin{equation*}
\frac{D^{3-2 \alpha} f(z)}{D^{2-2 \alpha} f(z)}=\phi(\omega(z)) \tag{11}
\end{equation*}
$$

Define the function P_{1} by

$$
P_{1}(z)=\frac{1+\omega(z)}{1-\omega(z)}=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots
$$

Since ω is a Schwarz function, we see that $\Re\left(P_{1}(z)\right) \geq 0$ and $P_{1}(0)=1$ and therefore $P_{1} \in \mathbf{P}$. It follows that
(12) $\omega(z)=\frac{P_{1}(z)-1}{P_{1}(z)+1}=\frac{1}{2}\left[p_{1} z+\left(p_{2}-\frac{p_{1}^{2}}{2}\right) z^{2}+\left(p_{3}-p_{1} p_{2}+\frac{p_{1}^{3}}{4}\right) z^{3}+\cdots\right]$.

Then, by a simple computation we get

$$
\phi(\omega(z))=1+\frac{B_{1} p_{1}}{2} z+\left[\frac{B_{1}}{2}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} p_{1}^{2}\right] z^{2}
$$

$$
+\left[\frac{B_{1}}{2}\left(p_{3}-p_{1} p_{2}+\frac{p_{1}^{3}}{4}\right)+\frac{B_{2} p_{1}}{2}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{B_{3} p_{1}^{3}}{8}\right] z^{3}+\cdots
$$

$$
\begin{equation*}
\equiv 1+b_{1} z+b_{2} z^{2}+b_{3} z^{3}+\cdots \tag{13}
\end{equation*}
$$

and therefore

$$
\begin{align*}
& b_{1}=\frac{B_{1} p_{1}}{2} \tag{14}\\
& b_{2}=\frac{B_{1}}{2}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} p_{1}^{2} \\
& b_{3}=\frac{B_{1}}{2}\left(p_{3}-p_{1} p_{2}+\frac{p_{1}^{3}}{4}\right)+\frac{B_{2} p_{1}}{2}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{B_{3} p_{1}^{3}}{8} \tag{16}
\end{align*}
$$

On the other hand, in view of (11) and (13), we have

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} b_{n} z^{n}=\frac{D^{3-2 \alpha} f(z)}{D^{2-2 \alpha} f(z)}=\frac{z+\sum_{n=2}^{\infty} C_{2}(\alpha, n) a_{n} z^{n}}{z+\sum_{n=2}^{\infty} C_{1}(\alpha, n) a_{n} z^{n}} \tag{17}
\end{equation*}
$$

where

$$
\mathcal{C}_{1}(\alpha, n)=\frac{\prod_{k=2}^{n}(k-2 \alpha)}{(n-1)!}, \mathcal{C}_{2}(\alpha, n)=\frac{\prod_{k=2}^{n}(k+1-2 \alpha)}{(n-1)!} .
$$

Equating the coefficients of z, z^{2} and z^{3} in (17), we obtain
(18) $\quad b_{1}=\left[\mathcal{C}_{2}(\alpha, 2)-\mathcal{C}_{1}(\alpha, 2)\right] a_{2}$,
(19) $\quad b_{2}=\left[\mathcal{C}_{2}(\alpha, 3)-\mathcal{C}_{1}(\alpha, 3)\right] a_{3}+\left[\mathcal{C}_{1}(\alpha, 2) a_{2}\right]^{2}-\left[\mathcal{C}_{1}(\alpha, 2) \mathcal{C}_{2}(\alpha, 2)\right] a_{2}{ }^{2}$,
and

$$
\begin{align*}
b_{3}= & {\left[\mathcal{C}_{2}(\alpha, 4)-\mathcal{C}_{1}(\alpha, 4)\right] a_{4} } \\
& +\left[2 \mathcal{C}_{1}(\alpha, 2) \mathcal{C}_{1}(\alpha, 3)-\mathcal{C}_{2}(\alpha, 3) \mathcal{C}_{1}(\alpha, 2)-\mathcal{C}_{2}(\alpha, 2) \mathcal{C}_{1}(\alpha, 3)\right] a_{2} a_{3} \\
& +\mathcal{C}_{2}(\alpha, 2)\left[\mathcal{C}_{1}(\alpha, 2) a_{2}\right]^{2} a_{2}-\left[\mathcal{C}_{1}(\alpha, 2) a_{2}\right]^{3} \tag{20}
\end{align*}
$$

$$
\mathrm{ng}(18),(19) \text { and (20) we have }
$$

$$
\begin{equation*}
a_{2}=b_{1}, \quad a_{3}=\frac{b_{2}+(2-2 \alpha) b_{1}^{2}}{(3-2 \alpha)} \tag{21}
\end{equation*}
$$

and
(22) $\quad a_{4}=\frac{2 b_{3}}{(3-2 \alpha)(4-2 \alpha)}+\frac{3(2-2 \alpha) b_{1} b_{2}}{(3-2 \alpha)(4-2 \alpha)}-\frac{(2-2 \alpha)^{2} b_{1}{ }^{3}}{(3-2 \alpha)(4-2 \alpha)}$.

Using the equations (14), (15) and (16) in (21) and (22), it follows that

$$
\begin{aligned}
& a_{2}=\frac{B_{1} p_{1}}{2} \\
& a_{3}=\frac{1}{(3-2 \alpha)}\left[\frac{B_{1}}{2}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{B_{2} p_{1}^{2}}{4}+(2-2 \alpha) \frac{B_{1}^{2} p_{1}^{2}}{4}\right] \\
& a_{4}=\frac{1}{8(3-2 \alpha)(4-2 \alpha)}\left[8 B_{1} p_{3}-2\left\{4\left(B_{1}-B_{2}\right)-3(2-2 \alpha) B_{1}^{2}\right\} p_{1} p_{2}\right.
\end{aligned}
$$

1026

$$
\begin{aligned}
& +\left\{2\left(B_{1}-2 B_{2}+B_{3}\right)-3(2-2 \alpha) B_{1}^{2}+3(2-2 \alpha) B_{1} B_{2}\right. \\
& \left.\left.+(2-2 \alpha)^{2}{B_{1}}^{3}\right\}{p_{1}}^{3}\right] .
\end{aligned}
$$

Thus we establish that the estimate of the second Hankel determinant is given by

$$
\begin{align*}
a_{2} a_{4}-a_{3}^{2}=\frac{1}{\mathcal{D}(\alpha)}[& \left\{(2-2 \alpha) B_{1}\left(B_{1}-2 B_{2}\right)-(2-2 \alpha)(1-2 \alpha) B_{1}^{2}\left(B_{1}-B_{2}\right)\right. \\
& \left.-(2-2 \alpha)^{2} B_{1}^{4}+2(3-2 \alpha) B_{1} B_{3}-(4-2 \alpha) B_{2}{ }^{2}\right\} p_{1}{ }^{4} \\
& -2(2-2 \alpha)\left\{2 B_{1}\left(B_{1}-B_{2}\right)-(1-2 \alpha) B_{1}^{3}\right\} p_{1}^{2} p_{2} \\
& (23) \tag{23}\\
& \left.-4(4-2 \alpha) B_{1}{ }^{2} p_{2}^{2}+8(3-2 \alpha) B_{1}{ }^{2} p_{1} p_{3}\right]
\end{align*}
$$

$$
\mathcal{D}(\alpha)=16(3-2 \alpha)^{2}(4-2 \alpha)
$$

Using Lemma 1.3 in (23), we have

$$
\begin{align*}
\left.\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{1}{\mathcal{D}(\alpha)} \right\rvert\, & {\left[2(3-2 \alpha) B_{1} B_{3}+(2-2 \alpha)(1-2 \alpha) B_{1}^{2} B_{2}\right.} \\
& \left.-(2-2 \alpha)^{2} B_{1}^{4}-(4-2 \alpha) B_{2}^{2}\right] p_{1}^{4} \\
& +(2-2 \alpha)\left[2 B_{1} B_{2}+(1-2 \alpha) B_{1}{ }^{3}\right]\left(4-p_{1}^{2}\right) p_{1}^{2} x \\
& -\left\{(2-2 \alpha) p_{1}^{2}+4(4-2 \alpha)\right\} B_{1}{ }^{2}\left(4-p_{1}^{2}\right) x^{2} \\
& +4(3-2 \alpha) B_{1}{ }^{2}\left(4-p_{1}^{2}\right) p_{1}\left(1-|x|^{2}\right) z \mid \tag{24}
\end{align*}
$$

Letting $\left|p_{1}\right|=\xi$ and in view of Lemma 1.2, we may assume without restriction that $\xi \in[0,2]$. Thus, applying the triangle inequality in (24) with $\delta=|x| \leq 1$ and $|z| \leq 1$, we obtain

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{\mathcal{D}(\alpha)}[\mid & -(2-2 \alpha)^{2} B_{1}{ }^{4}+2(3-2 \alpha) B_{1} B_{3}-(4-2 \alpha) B_{2}{ }^{2} \\
& +(2-2 \alpha)(1-2 \alpha) B_{1}{ }^{2} B_{2} \mid \xi^{4} \\
& +(2-2 \alpha)\left|2 B_{1} B_{2}+(1-2 \alpha) B_{1}{ }^{3}\right|\left(4-\xi^{2}\right) \xi^{2} \delta \\
& +\left\{(2-2 \alpha) \xi^{2}+4(4-2 \alpha)\right\} B_{1}{ }^{2}\left(4-\xi^{2}\right) \delta^{2} \\
& \left.+4(3-2 \alpha) B_{1}{ }^{2} \xi\left(4-\xi^{2}\right)\left(1-\delta^{2}\right)\right]=\mathcal{F}(\xi, \delta)
\end{aligned}
$$

Or equivalently

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{B_{1}}{\mathcal{D}(\alpha)}[\mid & -(2-2 \alpha)^{2} B_{1}^{3}+2(3-2 \alpha) B_{3}-(4-2 \alpha) \frac{B_{2}^{2}}{B_{1}} \\
& +(2-2 \alpha)(1-2 \alpha) B_{1} B_{2} \mid \xi^{4} \\
& +(2-2 \alpha)\left|2 B_{2}+(1-2 \alpha) B_{1}^{2}\right|\left(4-\xi^{2}\right) \xi^{2} \delta \\
& +\left\{(2-2 \alpha) \xi^{2}+4(4-2 \alpha)\right\} B_{1}\left(4-\xi^{2}\right) \delta^{2}
\end{aligned}
$$

$$
\left.+4(3-2 \alpha) B_{1} \xi\left(4-\xi^{2}\right)\left(1-\delta^{2}\right)\right]=\mathcal{F}(\xi, \delta)
$$

Note that for $(\xi, \delta) \in[0,2) \times[0,1]$, differentiating $\mathcal{F}(\xi, \delta)$, partially with respect to δ yields

$$
\frac{\partial \mathcal{F}}{\partial \delta}=\frac{B_{1}}{\mathcal{D}(\alpha)}\left[(2-2 \alpha)\left|2 B_{2}+(1-2 \alpha) B_{1}^{2}\right|\left(4-\xi^{2}\right) \xi^{2}\right.
$$

$$
\begin{equation*}
\left.+2\left\{(2-2 \alpha) \xi^{2}-4(3-2 \alpha) \xi+4(4-2 \alpha)\right\} B_{1}\left(4-\xi^{2}\right) \delta\right] \tag{25}
\end{equation*}
$$

Equivalently

$$
\begin{aligned}
\frac{\partial \mathcal{F}}{\partial \delta}=\frac{B_{1}}{\mathcal{D}(\alpha)}[& (2-2 \alpha)\left|2 B_{2}+(1-2 \alpha) B_{1}^{2}\right|\left(4-\xi^{2}\right) \xi^{2} \\
& \left.+2\{2(2-\xi)[2+(1-\alpha)(2-\xi)]\} B_{1}\left(4-\xi^{2}\right) \delta\right] .
\end{aligned}
$$

It is obvious that $2(2-\xi)[2+(1-\alpha)(2-\xi)]$, the coefficient term of δ in (25) is always a positive real number for all $(\xi, \delta) \in[0,2) \times[0,1]$. Hence it follows that the expression (25) is always positive for $\delta>0$ and $\alpha \leq 1$, which implies that $\mathcal{F}(\xi, \delta)$ is an increasing function of δ. Therefore, there exists no point of maximum in the interior of the closed region $[0,2) \times[0,1]$. Moreover for fixed $\xi \in[0,2)$, we have

$$
\max \mathcal{F}(\xi, \delta)=\mathcal{F}(\xi, 1)=\mathcal{G}(\xi)
$$

On simplification we find that

$$
\begin{equation*}
\mathcal{F}(\xi, 1)=\mathcal{G}(\xi)=\frac{B_{1}}{\mathcal{D}(\alpha)}\left[P t^{2}+Q t+R\right] \tag{26}
\end{equation*}
$$

where

$$
\begin{align*}
P=\mid & -(2-2 \alpha)^{2} B_{1}^{3}+2(3-2 \alpha) B_{3}-(4-2 \alpha) \frac{B_{2}{ }^{2}}{B_{1}} \\
& +(2-2 \alpha)(1-2 \alpha) B_{1} B 2 \mid \\
& \quad-(2-2 \alpha)\left|2 B_{2}+(1-2 \alpha) B_{1}{ }^{2}\right|-(2-2 \alpha) B_{1}, \tag{27}\\
Q= & 4(2-2 \alpha)\left|2 B_{2}+(1-2 \alpha) B_{1}{ }^{2}\right|-8 B_{1}, \tag{28}\\
R= & 16(4-2 \alpha) B_{1}, \tag{29}
\end{align*}
$$

and $t=\xi^{2}$. Since

$$
\max _{0 \leq t \leq 4}\left(P t^{2}+Q t+R\right)= \begin{cases}R, & Q \leq 0, P \leq-\frac{Q}{4}, \\ 16 P+4 Q+R, & Q \geq 0, P \geq-\frac{Q}{8} \text { or } Q \leq 0, P \geq-\frac{Q}{4}, \\ \frac{4 P R-Q^{2}}{4 P}, & Q>0, P \leq-\frac{Q}{8},\end{cases}
$$

we have

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \begin{cases}R, & Q \leq 0, P \leq-\frac{Q}{4} \\ 16 P+4 Q+R, & Q \geq 0, P \geq-\frac{Q}{8} \text { or } Q \leq 0, P \geq-\frac{Q}{4} \\ \frac{4 P R-Q^{2}}{4 P}, & Q>0, P \leq-\frac{Q}{8}\end{cases}
$$

where P, Q and R are given in (27), (28) and (29). This completes the proof of the theorem.

Remark 2.2. We note that by taking $\alpha=1 / 2$ in Theorem 2.1 we obtain the corresponding results in [5].

2.1. Concluding remarks

As a special case of Theorem 2.1, let ϕ be

$$
\phi(z)=\frac{1+A z}{1+B z}, \quad(-1 \leq B<A \leq 1)
$$

This gives

$$
\phi(z)=1+(A-B) z-B(A-B) z^{2}+B^{2}(A-B) z^{3}+\cdots
$$

so that $B_{1}=(A-B), B_{2}=-B(A-B)$ and $B_{3}=B^{2}(A-B)$ one can state the Hankel determinant inequality for the subclasses defined in Example 1.1.

Letting $A=1-2 \beta$ and $B=-1$ in (2.1), we have

$$
\begin{aligned}
\phi(z) & =\frac{1+(1-2 \beta) z}{1-z} \\
& =1+2(1-\beta) z+2(1-\beta) z^{2}+2(1-\beta) z^{3}+\cdots \quad(0 \leq \beta<1)
\end{aligned}
$$

Comparing with (9) we have $B_{1}=B_{2}=B_{3}=2(1-\beta)$. Thus Theorem 2.1 yields the Hankel inequality for $f \in \mathcal{R}_{\alpha}^{u}(\beta)$.

Further, by taking $\beta=0$, in (30), we let

$$
\phi(z)=\frac{1+z}{1-z}=1+2 z+2 z^{2}+2 z^{3}+\cdots
$$

Thus by comparing with (9) we note that, $B_{1}=B_{2}=B_{3}=2$ and making use of Theorem 2.1 one can easily state the Hankel inequality for $f \in \mathcal{R}_{\alpha}^{u}\left(\frac{1+z}{1-z}\right)$.
Acknowledgement. We thank the referees for their insightful suggestions and scholarly guidance to revise and improve the results as in present form.

References

[1] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[2] M. Fekete and G. Szegö, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. London Math. Soc. 8 (1933), no. 2, 85-89.
[3] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley, 1958.
[4] A. Janteng, S. A. Halim, and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse) 1 (2007), no. 13-16, 619-625.
[5] S. K. Lee, V. Ravichandran, and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. (2013), 281, 17 pp.
[6] R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), no. 2, 225-230.
[7] M.-S. Liu, J.-F. Xu, and M. Yang, Upper bound of second Hankel determinant for certain subclasses of analytic functions, Abstr. Appl. Anal. (2014), Art. ID 603180, 10 pp.
[8] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994.
[9] J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346.
[10] S. Ruscheweyh, Convolutions in Geometric Function Theory, Séminaire de Mathématiques Supérieures, 83, Presses de l'Université de Montréal, Montreal, QC, 1982.
[11] , Some properties of prestarlike and universally prestarlike functions, J. Anal. 15 (2007), 247-254.
[12] S. Ruscheweyh and L. Salinas, Universally prestarlike functions as convolution multipliers, Math. Z. 263 (2009), no. 3, 607-617.
[13] S. Ruscheweyh, L. Salinas, and T. Sugawa, Completely monotone sequences and universally prestarlike functions, Israel J. Math. 171 (2009), 285-304.
[14] T. N. Shanmugam and J. Lourthu Mary, Properties of universally prestarlike functions, International Journal of Engineering Research and Technology 1 (2012), no. 10, December.
[15] , A note on universally prestarlike functions, Stud. Univ. Babeş-Bolyai Math. 57 (2012), no. 1, 53-60.
[16] , Fekete-Szegö inequality for universally prestarlike functions, Fract. Calc. Appl. Anal. 13 (2010), no. 4, 385-394.
[17] B. Srutha Keerthi, M. Revathi, and G. Murugusundaramoorthy, The second Hankel determinant for certain classes of analytic univalent functions, Intern. J. Appl. Engineering Research 9 (2014), no. 22, 12241-12254.

Om Ahuja
Department of Mathematical Sciences
Kent State University
Ohio, USA
Email address: oahuja@kent.edu
Murugesan Kasthuri
Department of Mathematics
D. K. M College for Women (Autonomous)

Vellore - 632001, Tamilnadu, India
Email address: kasthuriraja.09@gmail.com
Gangadharan Murugusundaramoorthy
Department of Mathematics
School of Advanced Sciences
VIT University
Vellore - 632014, Tamilnadu, India
Email address: gmsmoorthy@yahoo.com

Kaliappan Vijaya
Department of Mathematics
School of Advanced Sciences
VIT University
Vellore - 632014, Tamilnadu, India
Email address: kvijaya@vit.ac.in

