SUFFICIENT CONDITIONS FOR UNIVALENCE AND STUDY OF A CLASS OF MEROMORPHIC UNIVALENT FUNCTIONS

Bappaditya Bhowmik and Firdoshi Parveen

Abstract

In this article we consider the class $\mathcal{A}(p)$ which consists of functions that are meromorphic in the unit disc \mathbb{D} having a simple pole at $z=p \in(0,1)$ with the normalization $f(0)=0=f^{\prime}(0)-1$. First we prove some sufficient conditions for univalence of such functions in \mathbb{D}. One of these conditions enable us to consider the class $\mathcal{V}_{p}(\lambda)$ that consists of functions satisfying certain differential inequality which forces univalence of such functions. Next we establish that $\mathcal{U}_{p}(\lambda) \subsetneq \mathcal{V}_{p}(\lambda)$, where $\mathcal{U}_{p}(\lambda)$ was introduced and studied in [2]. Finally, we discuss some coefficient problems for $\mathcal{V}_{p}(\lambda)$ and end the article with a coefficient conjecture.

1. Introduction and sufficient condition for univalence

Let \mathcal{M} be the set of meromorphic functions F in $\Delta=\{\zeta \in \mathbb{C}:|\zeta|>1\} \cup\{\infty\}$ with the following expansion:

$$
F(\zeta)=\zeta+\sum_{n=0}^{\infty} b_{n} \zeta^{-n}, \quad \zeta \in \Delta
$$

This means that these functions have simple pole at $z=\infty$ with residue 1 . Let \mathcal{A} be the collection of all analytic functions in $\mathbb{D}:=\{z:|z|<1\}$ with the normalization $f(0)=0=f^{\prime}(0)-1$. In [1], Aksentév proved a sufficient condition for a function $F \in \mathcal{M}$ to be univalent which we state now:

Theorem A. If $F \in \mathcal{M}$ satisfies the inequality

$$
\left|F^{\prime}(\zeta)-1\right| \leq 1, \quad \zeta \in \Delta
$$

then F is univalent in Δ.
This result motivated many authors to consider the classes $\mathcal{U}(\lambda):=\{f \in \mathcal{A}$: $\left.\left|U_{f}(z)\right|<\lambda, z \in \mathbb{D}\right\}, \lambda \in(0,1]$ where $U_{f}(z):=(z / f(z))^{2} f^{\prime}(z)-1$ and this class has been studied extensively in $[6,8]$ and references therein. In [2], we wanted to see the meromorphic analogue of the class $\mathcal{U}(\lambda)$ by introducing a nonzero

[^0]simple pole for such functions in \mathbb{D}. More precisely, we consider the class $\mathcal{A}(p)$ of all functions f that are holomorphic in $\mathbb{D} \backslash\{p\}, p \in(0,1)$ possessing a simple pole at the point $z=p$ with nonzero residue m and normalized by the condition $f(0)=0=f^{\prime}(0)-1$. We define $\Sigma(p):=\{f \in \mathcal{A}(p): f$ is one to one in $\mathbb{D}\}$. Therefore, each $f \in \mathcal{A}(p)$ has the Laurent series expansion of the following form
\[

$$
\begin{equation*}
f(z)=\frac{m}{z-p}+\sum_{n=0}^{\infty} a_{n} z^{n}, z \in \mathbb{D} \backslash\{p\} . \tag{1.1}
\end{equation*}
$$

\]

In this context we proved a sufficient condition for a function $f \in \mathcal{A}(p)$ to be univalent (see [2, Theorem 1]), which we recall now.

Theorem B. Let $f \in \mathcal{A}(p)$. If $\left|U_{f}(z)\right| \leq((1-p) /(1+p))^{2}$ for $z \in \mathbb{D}$, then f is univalent in \mathbb{D}.

Using Theorem B, we constructed a subclass $\mathcal{U}_{p}(\lambda)$ of $\Sigma(p)$ which is defined as follows:

$$
\mathcal{U}_{p}(\lambda):=\left\{f \in \mathcal{A}(p):\left|U_{f}(z)\right|<\lambda \mu, z \in \mathbb{D}\right\}
$$

where $0<\lambda \leq 1$ and $\mu=((1-p) /(1+p))^{2}$. We urge readers to see the article [2] for many other interesting results on functions in the subclass $\mathcal{U}_{p}(\lambda)$. In this note, we improve the sufficient condition proved in Theorem B by replacing the number $\mu=((1-p) /(1+p))^{2}$ with the number 1 . We give a proof of this result below.

Theorem 1. Let $f \in \mathcal{A}(p)$. If $\left|U_{f}(z)\right|<1$ holds for all $z \in \mathbb{D}$, then $f \in \Sigma(p)$.
Proof. Let $\mathcal{M}_{p}:=\{f \in \mathcal{M}: F(1 / p)=0\}$ where $0<p<1$. Clearly, $\mathcal{M}_{p} \subseteq \mathcal{M}$. For each $f \in \mathcal{A}(p)$ consider the transformation $F(\zeta):=1 / f(1 / \zeta), \zeta \in \Delta$. We claim that $F \in \mathcal{M}_{p} \subseteq \mathcal{M}$. Since f has an expansion of the form (1.1), therefore we have

$$
\begin{aligned}
F(\zeta)= & 1 / f(1 / \zeta) \\
= & \left(m \zeta /(1-p \zeta)+\sum_{n=0}^{\infty} a_{n} \zeta^{-n}\right)^{-1} \\
= & \zeta+\left(a_{1}-p a_{2}-1\right) / p \\
& +\left(p\left(a_{2}-p a_{3}\right)+\left(a_{1}-p a_{2}\right)^{2}-\left(a_{1}-p a_{2}\right)\right) / \zeta p^{2}+\cdots .
\end{aligned}
$$

Here we see that $F(1 / p)=0, F(\infty)=\infty$ and $F^{\prime}(\infty)=1$. This proves that each $f \in \mathcal{A}(p)$ can be associated with the mapping $F \in \mathcal{M}_{p}$. Using the change of variable $\mathbb{D} \ni z=1 / \zeta$, the above association quickly yields

$$
F^{\prime}(\zeta)-1=f^{\prime}(1 / \zeta) /\left(\zeta^{2} f^{2}(1 / \zeta)\right)-1=z^{2} f^{\prime}(z) / f^{2}(z)-1=U_{f}(z)
$$

Now since $\mathcal{M}_{p} \subseteq \mathcal{M}$, an application of the Theorem A gives that if any function $F \in \mathcal{M}_{p}$ satisfies $\left|F^{\prime}(\zeta)-1\right| \leq 1, \zeta \in \Delta$, then F is univalent in Δ, i.e., the inequality $\left|U_{f}(z)\right|<1$ forces f to be univalent in \mathbb{D}.

In view of the Theorem 1, it is natural to consider a new subclass $\mathcal{V}_{p}(\lambda)$ of $\Sigma(p)$ defined as:

$$
\mathcal{V}_{p}(\lambda):=\left\{f \in \mathcal{A}(p):\left|U_{f}(z)\right|<\lambda, z \in \mathbb{D}\right\} \quad \text { for } \lambda \in(0,1] .
$$

We now claim that $\mathcal{U}_{p}(\lambda) \subsetneq \mathcal{V}_{p}(\lambda) \subsetneq \Sigma(p)$. To establish the first inclusion, we note that as $\lambda \mu<\lambda$, therefore we have $\mathcal{U}_{p}(\lambda) \subseteq \mathcal{V}_{p}(\lambda)$. Now consider the function

$$
k_{p}^{\lambda}(z):=\frac{-p z}{(z-p)(1-\lambda p z)}, z \in \mathbb{D} .
$$

It is easy to check that $U_{k_{p}^{\lambda}}(z)=-\lambda z^{2}$ so that $\left|U_{k_{p}^{\lambda}}(z)\right|<\lambda$ but $\left|U_{k_{p}^{\lambda}}(z)\right| \nless \lambda \mu$ for all $z \in \mathbb{D}$. This proves the first inclusion. Next we wish to establish the second inclusion of our claim. We see that by virtue of the Theorem 1, $\mathcal{V}_{p}(\lambda) \subseteq \Sigma(p)$. Again considering the following two examples, we see that $\mathcal{V}_{p}(\lambda) \subsetneq \Sigma(p)$ for $0<\lambda \leq 1$.
Case 1: $(0<\lambda<1)$. Take $a \in \mathbb{C}$ such that $\lambda<|a|<1$. Consider the functions f_{a} defined by

$$
f_{a}(z)=\frac{z}{(z-p)(a z-1 / p)}, \quad z \in \mathbb{D}
$$

It is easy to check that f_{a} satisfies the normalizations $f_{a}(p)=\infty$ and $f_{a}(0)=$ $0=f_{a}^{\prime}(0)-1$. Also $f_{a}(z)$ is univalent in \mathbb{D} and $U_{f_{a}}(z)=-a z^{2}$. Now as $|z| \rightarrow 1^{-},\left|U_{f_{a}}(z)\right| \rightarrow|a|>\lambda$. Therefore $f_{a}(z) \notin \mathcal{V}_{p}(\lambda)$. This shows that $\mathcal{V}_{p}(\lambda)$ is a proper subclass of $\Sigma(p)$ for $0<\lambda<1$.
Case 2: $(\lambda=1)$. It is well-known that the function

$$
g(z)=\frac{z-2 p z^{2} /\left(1+p^{2}\right)}{(1-z / p)(1-z p)}, z \in \mathbb{D}
$$

is in $\Sigma(p)$ (Compare [4]). A little calculation shows that

$$
U_{g}(z)=\left(z\left(1-p^{2}\right) /\left(1+p^{2}\right)\right)^{2}\left(1-\left(2 p z /\left(1+p^{2}\right)\right)\right)^{-2} .
$$

Now $\left|U_{g}(z)\right|<1$ holds for all $|z| \leq R$ whenever $R<\frac{1+p^{2}}{1+2 p-p^{2}}<1$. From here we can conclude that g does not belongs to the class $\mathcal{V}_{p}(\lambda)$ for $\lambda=1$, i.e. $\mathcal{V}_{p}:=\mathcal{V}_{p}(1) \subsetneq \Sigma(p)$.

Remark. It can be easily seen that similar to the class $\mathcal{U}_{p}(\lambda)$, the class $\mathcal{V}_{p}(\lambda)$ is preserved under conjugation and is not preserved under the operations like rotation, dilation, omitted value transformation and the n-th root transformations.

Let $f \in \mathcal{A}(p)$. We see that the function z / f is analytic in \mathbb{D} and non vanishing in $\mathbb{D} \backslash\{p\}$. Therefore it has a Taylor expansion of the following form about the origin.

$$
\begin{equation*}
\frac{z}{f(z)}=1+b_{1} z+b_{2} z^{2}+\cdots, z \in \mathbb{D} \tag{1.2}
\end{equation*}
$$

Now we prove some sufficient conditions for univalence of functions $f \in \mathcal{A}(p)$ which involves the second and higher order derivatives of z / f. These are the contents of the next two theorems.

Theorem 2. Let $f \in \mathcal{A}(p)$ and f / z be non-vanishing in $\mathbb{D} \backslash\{0\}$. If $\left|(z / f(z))^{\prime \prime}\right|$ ≤ 2 for $z \in \mathbb{D}$, then f is univalent in \mathbb{D}. This condition is only sufficient for univalence but not necessary.

Proof. First we prove the univalence of f. Using the expansion (1.2), we have

$$
U_{f}(z)=-z(z / f)^{\prime}+(z / f)-1=\sum_{n=2}^{\infty}(1-n) b_{n} z^{n}
$$

We also note that $z U_{f}^{\prime}(z)=-z^{2}(z / f)^{\prime \prime}$. Therefore $\left|(z / f)^{\prime \prime}\right| \leq 2$ yields $\left|z U_{f}^{\prime}(z)\right|$ $\leq 2|z|$. This implies that $z U_{f}^{\prime}(z) \prec 2 z$ where \prec denotes usual subordination. Now by a well known result of subordination (compare [5, p. 76, Theorem 3.1d.]), we get $U_{f}(z) \prec z$, i.e., $\left|U_{f}(z)\right| \leq|z|<1$. This shows that f is univalent in \mathbb{D} by virtue of the Theorem 1. In order to establish the second claim of the theorem, we consider the function

$$
h(z)=\frac{2 p z}{(p-z)(2-p z(p+z))}, z \in \mathbb{D} .
$$

Note that $h(0)=0=h^{\prime}(0)-1$ and $h(p)=\infty$. Also since $|p z(p+z)|<2, h$ has no other poles in \mathbb{D} except at $z=p$. Consequently $h \in \mathcal{A}(p)$. It is easy to check that $U_{h}(z)=-z^{3}$ and $(z / h)^{\prime \prime}=3 z$. Hence $\left|U_{h}(z)\right|<1$ but $\left|(z / h)^{\prime \prime}\right|>2$ for $2 / 3<|z|<1$. This example shows that the boundedness condition in the statement of the theorem is only sufficient but not necessary.

The following theorem is also a univalence criterion described by a sharp inequality involving the n-th order derivatives of z / f (denoted by $\left.(z / f)^{(n)}\right)$, $n \geq 3$.

Theorem 3. Let $f \in \mathcal{A}(p)$ and $f(z) \neq 0$ for $\mathbb{D} \backslash\{0\}$. If for $n \geq 3$,

$$
\begin{equation*}
\sum_{k=0}^{n-3} \frac{k+1}{(k+2)!}\left|\alpha_{k}\right|+\frac{n-1}{n!}\left|\left(\frac{z}{f}\right)^{(n)}\right| \leq 1, z \in \mathbb{D} \tag{1.3}
\end{equation*}
$$

where $\alpha_{k}=-\left.(z / f)^{(k+2)}\right|_{z=0}$, then f is univalent in \mathbb{D}. The result is sharp and equality holds in the above inequality for the function $k_{p}(z)=-p z /(z-p)(1-p z)$ for all $n \geq 3$ and for the functions

$$
f_{n}(z)=\frac{z}{1-\left(1 / p+p^{n-1} /(n-1)\right) z+z^{n} /(n-1)}, z \in \mathbb{D}
$$

for each $n \geq 3$.
Proof. Proceeding similarly as the proof of [7, Theorem 1.1], the inequality (1.3) will imply that $\left|U_{f}(z)\right|<1$ which proves that f is univalent in \mathbb{D}. To
complete the proof of the remaining assertion of the theorem, we consider the univalent function k_{p} and compute

$$
\left(z / k_{p}(z)\right)^{\prime}=-(1 / p+p)+2 z, \quad\left(z / k_{p}(z)\right)^{\prime \prime}=2 \text { and }\left(z / k_{p}(z)\right)^{(n)}=0, n \geq 3
$$

Therefore we get $\alpha_{0}=-2$ and $\alpha_{k}=0$ for $k \geq 1$. Taking account of the above computations, it can now be easily checked that the equality holds in the inequality (1.3). Lastly, it can be proved that the functions $f_{n} \in \mathcal{V}_{p}(\lambda)$ for $\lambda=1$, i.e., f_{n} is univalent in \mathbb{D}. Again for the functions f_{n}, it is easy to check that $\alpha_{k}=0,0 \leq k \leq n-3$ and $\left(z / f_{n}\right)^{(n)}=n!/(n-1)$ for all $n \geq 3$, which essentially proves the sharpness of the result.

Now in the following theorem we give sufficient conditions for a function $f \in$ $\mathcal{A}(p)$ to be in the class $\mathcal{V}_{p}(\lambda)$ by using Theorem 1, Theorem 2 and Theorem 3 in terms of the coefficients b_{n} defined in (1.2).

Theorem 4. Let $f \in \mathcal{A}(p)$ and each z / f has the expansion of the form (1.2). If f satisfies any one of the following three conditions namely
(i) $\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right| \leq \lambda$,
(ii) $\sum_{n=2}^{\infty=2} n(n-1)\left|b_{n}\right| \leq 2 \lambda$,
(iii) $\sum_{k=2}^{n}(k-1)\left|b_{k}\right|+(n-1) \sum_{k=n+1}^{\infty}\binom{k}{n}\left|b_{k}\right| \leq \lambda$,
then $f \in \mathcal{V}_{p}(\lambda)$.
Proof. Since z / f has the form (1.2), it is simple exercise to see that

$$
U_{f}(z)=-\sum_{n=2}^{\infty}(n-1) b_{n} z^{n}, \quad(z / f)^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) b_{n} z^{n-2}
$$

and

$$
\left(\frac{z}{f}\right)^{(n)}=n!b_{n}+\sum_{k=n+1}^{\infty} \frac{k!b_{k}}{(k-n)!} z^{k-n}=\sum_{k=n}^{\infty} \frac{k!b_{k}}{(k-n)!} z^{k-n}
$$

Therefore condition (i) and (ii) implies that $\left|U_{f}(z)\right|<\lambda$ and $\left|(z / f)^{\prime \prime}\right|<2 \lambda$ respectively. Again following the similar arguments of the proof of Theorem 2, we conclude that $\left|(z / f)^{\prime \prime}\right|<2 \lambda$ implies $\left|U_{f}(z)\right|<\lambda$. Now

$$
\alpha_{k}=-\left.(z / f)^{(k+2)}\right|_{z=0}=-(k+2)!b_{k+2} .
$$

Substituting the value of α_{k} and $(z / f)^{(n)}$ in terms of the coefficient b_{n} in the left hand side of the inequality (1.3) we get

$$
\begin{aligned}
& \sum_{k=0}^{n-3}(k+1)\left|b_{k+2}\right|+\frac{n-1}{n!}\left|\sum_{k=n}^{\infty} \frac{k!b_{k}}{(k-n)!} z^{k-n}\right| \\
\leq & \sum_{k=2}^{n}(k-1)\left|b_{k}\right|+(n-1) \sum_{k=n+1}^{\infty}\binom{k}{n}\left|b_{k}\right| \\
\leq & \lambda \quad(\text { by }(\mathrm{iii})) .
\end{aligned}
$$

Hence an application of Theorem 3 gives $\left|U_{f}(z)\right|<\lambda$. This shows that, in each case $f \in \mathcal{V}_{p}(\lambda)$.

In the following section we study some coefficient problems for functions in $\mathcal{V}_{p}(\lambda)$ which is one of the important problem in geometric function theory.

2. Coefficient problem for the class $\mathcal{V}_{p}(\lambda)$

Let $f \in \mathcal{V}_{p}(\lambda)$ with the expansion (1.2). Now proceeding as a similar manner of ([2, Theorem 12]) we have the sharp bounds for $\left|b_{n}\right|, n \geq 2$, which is given by

$$
\left|b_{n}\right| \leq \frac{\lambda}{n-1}, \quad n \geq 2
$$

and equality holds in the above inequality for the function

$$
\begin{equation*}
f(z)=\frac{z}{1-\left(1 / p+\left(\lambda p^{n-1}\right) /(n-1)\right) z+\lambda z^{n} /(n-1)}, z \in \mathbb{D} \tag{2.1}
\end{equation*}
$$

Each $f \in \mathcal{V}_{p}(\lambda)$ has the following Taylor expansion

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n}(f) z^{n}, \quad|z|<p \tag{2.2}
\end{equation*}
$$

Now the problem is to find out the region of variability of these Taylor coefficients $a_{n}(f), n \geq 2$. Here we note that similar to the class $\mathcal{U}_{p}(\lambda)$, every $f \in \mathcal{V}_{p}(\lambda)$ has the following representation (see [2, Theorem 3]):

$$
\begin{equation*}
\frac{z}{f(z)}=1-\left(\frac{f^{\prime \prime}(0)}{2}\right) z+\lambda z \int_{0}^{z} w(t) d t \tag{2.3}
\end{equation*}
$$

where $w \in \mathcal{B}$. Here \mathcal{B} denotes the class of functions w that are analytic in \mathbb{D} such that $|w(z)| \leq 1$ for $z \in \mathbb{D}$. By using this representation formula in the following theorem we give the exact set of variability for the second Taylor coefficient of $f \in \mathcal{V}_{p}(\lambda)$.

Theorem 5. Let each $f \in \mathcal{V}_{p}(\lambda)$ has the Taylor expansion

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n}(f) z^{n}
$$

in the disc $\{z:|z|<p\}$. Then the exact region of variability of the second Taylor coefficient $a_{2}(f)$ is the disc determined by the inequality

$$
\begin{equation*}
\left|a_{2}(f)-1 / p\right| \leq \lambda p \tag{2.4}
\end{equation*}
$$

Proof. Substituting $z=p$ in (2.3) we get

$$
a_{2}(f)=\frac{f^{\prime \prime}(0)}{2}=\frac{1+\lambda p \int_{0}^{p} w(t) d t}{p}
$$

which implies

$$
\begin{aligned}
\left|a_{2}(f)-1 / p\right| & =\left|\frac{\lambda p \int_{0}^{p} w(t) d t}{p}\right| \\
& \leq \lambda \int_{0}^{p}|w(t)| d t \leq \lambda p
\end{aligned}
$$

Therefore $\left|a_{2}(f)-1 / p\right| \leq \lambda p$. A point on the boundary of the disc described by (2.4) is attained for the function

$$
f_{\theta}(z)=\frac{z}{1-\frac{z}{p}\left(1+\lambda p^{2} e^{i \theta}\right)+\lambda e^{i \theta} z^{2}}, z \in \mathbb{D}
$$

where $\theta \in[0,2 \pi]$. Also the points in the interior of the disc described in (2.4) are attained by the functions

$$
f_{a}(z)=\frac{z}{1-\frac{z}{p}\left(1+\lambda a p^{2}\right)+\lambda a z^{2}}, z \in \mathbb{D},
$$

where $0<|a|<1$. It is easy to see that these functions belong to the class $\mathcal{V}_{p}(\lambda)$. This shows that the exact region of variability of $a_{2}(f)$ is given by the disc (2.4).

Following consequences of the above theorem can be observed easily:
Corollary 1. Let for some $\lambda \in(0,1], f \in \mathcal{V}_{p}(\lambda)$ and has the form $f(z)=$ $z+\sum_{n=2}^{\infty} a_{n}(f) z^{n}$, in the disc $\{z:|z|<p\}$. Then $\left|a_{2}(f)\right| \leq 1 / p+\lambda p$ and equality holds in this inequality for the function k_{p}^{λ}.

Now the function k_{p}^{λ} is analytic in the disk $\{z:|z|<p\}$ and has the Taylor expansion as

$$
k_{p}^{\lambda}(z)=\sum_{n=1}^{\infty} \frac{1-\lambda^{n} p^{2 n}}{p^{n-1}\left(1-\lambda p^{2}\right)} z^{n}, \quad|z|<p .
$$

Since the function k_{p}^{λ} serves as an extremal function for the class $\mathcal{V}_{p}(\lambda)$, the above corollary enables us to make the following:

Conjecture 1. If $f \in \mathcal{V}_{p}(\lambda)$ for some $0<\lambda \leq 1$ and has the expansion of the form (2.2), then

$$
\left|a_{n}(f)\right| \leq \frac{1-\lambda^{n} p^{2 n}}{p^{n-1}\left(1-\lambda p^{2}\right)}, n \geq 3
$$

Remark. Here we note that all the results proved in [2] and in [3] for the class $\mathcal{U}_{p}(\lambda)$ will also be true for the bigger function class $\mathcal{V}_{p}(\lambda)$ if we substitute λ in place of $\lambda \mu$ and follow the same method of proof. We also remark that the authors of [9] have also considered similar meromorphic functions and arrive at this conjectured bound for $\left|a_{n}(f)\right|$ (compare [9, Remark 2]), but their study of such functions comes from a different perspective.

References

[1] L. A. Aksentév, Sufficient conditions for univalence of regular functions, Izv. Vysš. Učebn. Zaved. Matematika 4 (1958), no. 3, 3-7.
[2] B. Bhowmik and F. Parveen, On a subclass of meromorphic univalent functions, Complex Var. Elliptic Equ. 62 (2017), no. 4, 494-510.
[3] _ Criteria for univalence, integral means and dirichlet integral for meromorphic functions, Bull. Belg. Math. Soc. Simon Stevin 24 (2017), 427-438.
[4] B. Bhowmik, S. Ponnusamy, and K.-J. Wirths, Concave functions, Blaschke products and polygonal mappings, Sib. Math. J. 50 (2009), no. 4, 609-615.
[5] S. S. Miller and P. T. Mocanu, Differential Subordinations, Theory and Applications, Marcel Dekker Inc., New York, 1999.
[6] M. Obradović and S. Ponnusamy, Univalence and starlikeness of certain integral transforms defined by convolution of analytic functions, J. Math. Anal. Appl. 336 (2007), no. 2, 758-767.
[7] 149-157.
[8] M. Obradović, S. Ponnusamy, and K.-J. Wirths, Geometric studies on the class $\mathcal{U}(\lambda)$, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 3, 1259-1284.
[9] S. Ponnusamy and K.-J. Wirths, Elementary consideration for classes of meromorphic univalent functions, Lobachevskii J. Math. (2018), To appear.

Bappaditya Bhowmik
Department of Mathematics
Indian Institute of Technology Kharagpur
Kharagpur-721302, India
Email address: bappaditya@maths.iitkgp.ernet.in
Firdoshi Parveen
Department of Mathematics
Indian Institute of Technology Kharagpur
Kharagpur-721302, India
Email address: frd.par@maths.iitkgp.ernet.in

[^0]: Received May 24, 2017; Revised July 14, 2017; Accepted August 8, 2017.
 2010 Mathematics Subject Classification. 30C45, 30C55.
 Key words and phrases. meromorphic functions, univalent functions, subordination, Taylor coefficients.

