DOI QR코드

DOI QR Code

BEST CONSTANT IN ZYGMUND'S INEQUALITY AND RELATED ESTIMATES FOR ORTHOGONAL HARMONIC FUNCTIONS AND MARTINGALES

  • Osekowski, Adam (Department of Mathematics, Informatics and Mechanics University of Warsaw)
  • Received : 2011.01.14
  • Published : 2012.05.01

Abstract

For any $K$ > $2/{\pi}$ we determine the optimal constant $L(K)$ for which the following holds. If $u$, $tilde{u}$ are conjugate harmonic functions on the unit disc with $\tilde{u}(0)=0$, then $$ {\int}_{-\pi}^{\pi}{\mid}\tilde{u}(e^{i\phi}){\mid}\frac{d{\phi}}{2{\pi}}{\leq}K{\int}_{-\pi}^{\pi}{\mid}u(e^{i{\phi}}){\mid}{\log}^+{\mid}u(e^{i{\phi}}){\mid}\frac{d{\phi}}{2{\pi}}+L(K).$$ We also establish a related estimate for orthogonal harmonic functions given on Euclidean domains as well as an extension concerning orthogonal martingales under differential subordination.

Keywords

References

  1. R. Banuelos and G. Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms, Duke Math. J. 80 (1995), no. 3, 575-600. https://doi.org/10.1215/S0012-7094-95-08020-X
  2. R. Banuelos and G. Wang, Orthogonal martingales under differential subordination and application to Riesz transforms, Illinois J. Math. 40 (1996), no. 4, 678-691.
  3. R. Banuelos and G. Wang, Davis's inequality for orthogonal martingales under differential subordination, Michigan Math. J. 47 (2000), no. 1, 109-124. https://doi.org/10.1307/mmj/1030374671
  4. D. L. Burkholder, Differential subordination of harmonic functions and martingales, Harmonic analysis and partial differential equations (El Escorial, 1987), 1-23, Lecture Notes in Math., 1384, Springer, Berlin, 1989.
  5. C. Dellacherie and P. A. Meyer, Probabilities and Potential B, North-Holland, Amsterdam, 1982.
  6. M. Essen, D. F. Shea, and C. S. Stanton, Best constants in Zygmund's inequality for conjugate functions, Papers on analysis, 73-80, Rep. Univ. Jyvaskyla Dep. Math. Stat., 83, University of Jyvaskila, 2001.
  7. M. Essen, D. F. Shea, and C. S. Stanton, Sharp L $log^{\alpha}$ L inequalities for conjugate functions, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 2, 623-659. https://doi.org/10.5802/aif.1896
  8. T. W. Gamelin, Uniform Algebras and Jensen Measures, London Math. Soc. Lecture Notes Series, Vol. 32, Cambridge Univ. Press, Cambridge/New York, 1978.
  9. P. Janakiraman, Best weak-type (p, p) constants, 1 < p < 2, for orthogonal harmonic functions and martingales, Illinois J. Math. 48 (2004), no. 3, 909-921.
  10. A. Osekowski, Sharp inequalities for differentially subordinate harmonic functions and martingales, to appear in Canadian Math. Bull.
  11. G. Peskir and A. Shiryaev, Optimal Stopping and Free Boundary Problems, Lectures in Mathematics ETH Zurich. Birkhauser Verlag, Basel, 2006.
  12. S. K. Pichorides, On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math. 44 (1972), 165-179.
  13. M. Riesz, Les fonctions conjugees et ler series de Fourier, C. R. Acad. Paris, 178 (1924), 1464-1467.
  14. M. Riesz, Sur les fonctions conjugees, Math. Z. 27 (1927), 218-244.
  15. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd edition, Springer Verlag, 1999.
  16. G.Wang, Differential subordination and strong differential subordination for continuous time martingales and related sharp inequalities, Ann. Probab. 23 (1995), no. 2, 522-551. https://doi.org/10.1214/aop/1176988278
  17. A. Zygmund, Sur les fonctions conjugees, Fund. Math. 13 (1929), 284-303.