• Title/Summary/Keyword: uniformly convex metric space

Search Result 7, Processing Time 0.016 seconds

THE PROXIMAL POINT ALGORITHM IN UNIFORMLY CONVEX METRIC SPACES

  • Choi, Byoung Jin;Ji, Un Cig
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.845-855
    • /
    • 2016
  • We introduce the proximal point algorithm in a p-uniformly convex metric space. We first introduce the notion of p-resolvent map in a p-uniformly convex metric space as a generalization of the Moreau-Yosida resolvent in a CAT(0)-space, and then we secondly prove the convergence of the proximal point algorithm by the p-resolvent map in a p-uniformly convex metric space.

S-ITERATION PROCESS FOR ASYMPTOTIC POINTWISE NONEXPANSIVE MAPPINGS IN COMPLETE HYPERBOLIC METRIC SPACES

  • Atsathi, Thikamporn;Cholamjiak, Prasit;Kesornprom, Suparat;Prasong, Autchara
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.575-583
    • /
    • 2016
  • In this paper, we study the modified S-iteration process for asymptotic pointwise nonexpansive mappings in a uniformly convex hyperbolic metric space. We then prove the convergence of the sequence generated by the modified S-iteration process.

COMMON FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS BY ONE-STEP ITERATION PROCESS IN CONVEX METRIC SPACES

  • Abbas, Mujahid;Khan, Safeer Hussain;Kim, Jong-Kyu
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.693-702
    • /
    • 2010
  • We study one-step iteration process to approximate common fixed points of two nonexpansive mappings and prove some convergence theorems in convex metric spaces. Using the so-called condition (A'), the convergence of iteratively defined sequences in a uniformly convex metric space is also obtained.

STRONG CONVERGENCE IN NOOR-TYPE ITERATIVE SCHEMES IN CONVEX CONE METRIC SPACES

  • LEE, BYUNG-SOO
    • The Pure and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.185-197
    • /
    • 2015
  • The author considers a Noor-type iterative scheme to approximate com- mon fixed points of an infinite family of uniformly quasi-sup(fn)-Lipschitzian map- pings and an infinite family of gn-expansive mappings in convex cone metric spaces. His results generalize, improve and unify some corresponding results in convex met- ric spaces [1, 3, 9, 16, 18, 19] and convex cone metric spaces [8].

COMMON FIXED POINT AND INVARIANT APPROXIMATION IN MENGER CONVEX METRIC SPACES

  • Hussain, Nawab;Abbas, Mujahid;Kim, Jong-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.671-680
    • /
    • 2008
  • Necessary conditions for the existence of common fixed points for noncommuting mappings satisfying generalized contractive conditions in a Menger convex metric space are obtained. As an application, related results on best approximation are derived. Our results generalize various well known results.

BEST PROXIMITY POINT THEOREMS FOR CYCLIC 𝜃-𝜙-CONTRACTION ON METRIC SPACES

  • Rossafi, Mohamed;Kari, Abdelkarim;Lee, Jung Rye
    • The Pure and Applied Mathematics
    • /
    • v.29 no.4
    • /
    • pp.335-352
    • /
    • 2022
  • In this paper, we give an extended version of fixed point results for 𝜃-contraction and 𝜃-𝜙-contraction and define a new type of contraction, namely, cyclic 𝜃-contraction and cyclic 𝜃-𝜙-contraction in a complete metric space. Moreover, we prove the existence of best proximity point for cyclic 𝜃-contraction and cyclic 𝜃-𝜙-contraction. Also, we establish best proximity result in the setting of uniformly convex Banach space.