• 제목/요약/키워드: uniformly accretive operator

검색결과 18건 처리시간 0.021초

STRONG CONVERGENCE OF STRICT PSEUDO-CONTRACTIONS IN Q-UNIFORMLY SMOOTH BANACH SPACES

  • Pei, Yonggang;Liu, Fujun;Gao, Qinghui
    • Journal of applied mathematics & informatics
    • /
    • 제33권1_2호
    • /
    • pp.13-31
    • /
    • 2015
  • In this paper, we introduce a general iterative algorithm for finding a common element of the common fixed point set of an infinite family of ${\lambda}_i$-strict pseudo-contractions and the solution set of a general system of variational inclusions for two inverse strongly accretive operators in q-uniformly smooth Banach spaces. Then, we analyze the strong convergence of the iterative sequence generated by the proposed iterative algorithm under mild conditions.

Mann-Iteration process for the fixed point of strictly pseudocontractive mapping in some banach spaces

  • Park, Jong-An
    • 대한수학회지
    • /
    • 제31권3호
    • /
    • pp.333-337
    • /
    • 1994
  • Many authors[3][4][5] constructed and examined some processes for the fixed point of strictly pseudocontractive mapping in various Banach spaces. In fact the fixed point of strictly pseudocontractive mapping is the zero of strongly accretive operators. So the same processes are used for the both circumstances. Reich[3] proved that Mann-iteration precess can be applied to approximate the zero of strongly accretive operator in uniformly smooth Banach spaces. In the above paper he asked whether the fact can be extended to other Banach spaces the duals of which are not necessarily uniformly convex. Recently Schu[4] proved it for uniformly continuous strictly pseudocontractive mappings in smooth Banach spaces. In this paper we proved that Mann-iteration process can be applied to approximate the fixed point of strictly pseudocontractive mapping in certain Banach spaces.

  • PDF

SENSITIVITY ANALYSIS FOR A NEW SYSTEM OF VARIATIONAL INEQUALITIES

  • Jeong, Jae-Ug
    • 대한수학회논문집
    • /
    • 제25권3호
    • /
    • pp.427-441
    • /
    • 2010
  • In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of generalized parametric multi-valued variational inclusions with (A, $\eta$)-accretive mappings in q-uniformly smooth Banach spaces. The present results improve and extend many known results in the literature.

A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS IN REAL BANACH SPACES

  • Bai, Chuan-Zhi;Fang, Jin-Xuan
    • 대한수학회보
    • /
    • 제40권3호
    • /
    • pp.385-397
    • /
    • 2003
  • In this paper, we introduce and study a system of nonlinear implicit variational inclusions (SNIVI) in real Banach spaces: determine elements $x^{*},\;y^{*},\;z^{*}\;\in\;E$ such that ${\theta}\;{\in}\;{\alpha}T(y^{*})\;+\;g(x^{*})\;-\;g(y^{*})\;+\;A(g(x^{*}))\;\;\;for\;{\alpha}\;>\;0,\;{\theta}\;{\in}\;{\beta}T(z^{*})\;+\;g(y^{*})\;-\;g(z^{*})\;+\;A(g(y^{*}))\;\;\;for\;{\beta}\;>\;0,\;{\theta}\;{\in}\;{\gamma}T(x^{*})\;+\;g(z^{*})\;-\;g(x^{*})\;+\;A(g(z^{*}))\;\;\;for\;{\gamma}\;>\;0,$ where T, g : $E\;{\rightarrow}\;E,\;{\theta}$ is zero element in Banach space E, and A : $E\;{\rightarrow}\;{2^E}$ be m-accretive mapping. By using resolvent operator technique for n-secretive mapping in real Banach spaces, we construct some new iterative algorithms for solving this system of nonlinear implicit variational inclusions. The convergence of iterative algorithms be proved in q-uniformly smooth Banach spaces and in real Banach spaces, respectively.

A SYSTEM OF NONLINEAR SET-VALUED IMPLICIT VARIATIONAL INCLUSIONS IN REAL BANACH SPACES

  • Bai, Chuanzhi;Yang, Qing
    • 대한수학회논문집
    • /
    • 제25권1호
    • /
    • pp.129-137
    • /
    • 2010
  • In this paper, we introduce and study a system of nonlinear set-valued implicit variational inclusions (SNSIVI) with relaxed cocoercive mappings in real Banach spaces. By using resolvent operator technique for M-accretive mapping, we construct a new class of iterative algorithms for solving this class of system of set-valued implicit variational inclusions. The convergence of iterative algorithms is proved in q-uniformly smooth Banach spaces. Our results generalize and improve the corresponding results of recent works.

ITERATING A SYSTEM OF SET-VALUED VARIATIONAL INCLUSION PROBLEMS IN SEMI-INNER PRODUCT SPACES

  • Shafi, Sumeera
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제29권4호
    • /
    • pp.255-275
    • /
    • 2022
  • In this paper, we introduce a new system of set-valued variational inclusion problems in semi-inner product spaces. We use resolvent operator technique to propose an iterative algorithm for computing the approximate solution of the system of set-valued variational inclusion problems. The results presented in this paper generalize, improve and unify many previously known results in the literature.

Nonlinear semigroups on locally convex spaces

  • Hyeon, Son-Kuk
    • East Asian mathematical journal
    • /
    • 제6권1호
    • /
    • pp.111-121
    • /
    • 1990
  • Let E be a locally convex Hausdorff space and let $\Gamma$ be a calibration for E. In this note we proved that if E is sequentially complete and a multi-vaiued operaturA in E is $\Gamma$-accretive such that $D(A){\subset}Re$ (I+$\lambda$A) for all sufficiently small positive $\lambda$, then A generates a nonlinear $\Gamma$-contraction semiproup {T(t) ; t>0}. We also proved that if E is complete, $Gamma$ is a dually uniformly convex calibration, and an operator A is m-$\Gamma$-accretive, then the initial value problem $$\{{\frac{d}{dt}u(t)+Au(t)\;\ni\;0,\;t >0,\atop u(0)=x}\.$$ has a solution $u:[0,\infty){\rightarrow}E$ given by $u(t)=T(t)x={lim}\limit_{n\rightarrow\infty}(I+\frac{t}{n}A)^{-n}x$ each $x{\varepsilon}D(A)$.

  • PDF

STRONG AND WEAK CONVERGENCE OF THE ISHIKAWA ITERATION METHOD FOR A CLASS OF NONLINEAR EQUATIONS

  • Osilike, M.O.
    • 대한수학회보
    • /
    • 제37권1호
    • /
    • pp.153-169
    • /
    • 2000
  • Let E be a real q-uniformly smooth Banach space which admits a weakly sequentially continuous duality map, and K a nonempty closed convex subset of E. Let T : K -> K be a mapping such that $F(T)\;=\;{x\;{\in}\;K\;:\;Tx\;=\;x}\;{\neq}\;0$ and (I - T) satisfies the accretive-type condition: $\;{\geq}\;{\lambda}$\mid$$\mid$x-Tx$\mid$$\mid$^2$, for all $x\;{\in}\;K,\;x^*\;{\in}\;F(T)$ and for some ${\lambda}\;>\;0$. The weak and strong convergence of the Ishikawa iteration method to a fixed point of T are investigated. An application of our results to the approximation of a solution of a certain linear operator equation is also given. Our results extend several important known results from the Mann iteration method to the Ishikawa iteration method. In particular, our results resolve in the affirmative an open problem posed by Naimpally and Singh (J. Math. Anal. Appl. 96 (1983), 437-446).

  • PDF