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A SYSTEM OF NONLINEAR VARIATIONAL
INCLUSIONS IN REAL BANACH SPACES

CHUAN-ZHI BAI AND JIN-XUAN FANG

ABSTRACT. In this paper, we introduce and study a system of non-
linear implicit variational inclusions (SNIVI) in real Banach spaces:
determine elements z*, y*, z* € E such that

0 €al(y") +g(z") — g(y") + Alg(z")) for a >0,

0 €pT(2") +9(y") —9(z") + A(g(y"))  for >0,

0 € yT(z*) + g(2") — g(z™) + A(g(z")) fory >0,
where T,g : E — E, 6 is zero element in Banach space E, and
A : E — 2% be m-accretive mapping. By using resolvent opera-
tor technique for m-accretive mapping in real Banach spaces, we
construct some new iterative algorithms for solving this system of
nonlinear implicit variational inclusions. The convergence of iter-

ative algorithms be proved in g-uniformly smooth Banach spaces
and in real Banach spaces, respectively.

1. Introduction

In recent years, variational inequalities have been extended and gen-
eralized in different directions, using novel and innovative techniques.
Useful and important generalizations of variational inequalities are vari-
ational inclusions which in the Hilbert spaces settings, we refer to [3]-[4],
[6]-(7], and [9]. Recently, Huang [5] introduce and study a new class
of generalized set-valued implicit variational inclusions in real Banach
spaces.

Iterative algorithms have played a central role in the approximation-
solvability, especially of nonlinear variational inequalities as well as of
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nonlinear equations in several fields such as applied mathematics, math-
ematics programming, mathematical finance, control theory and opti-
mization, engineering sciences, and others. Very recently, Verma [10]
introduced and investigated the approximation solvability of a new sys-
tem of nonlinear variational inequalities involving strongly monotone
mappings.

Inspired and motivated by the results in [5], [10], the purpose of this
paper is to introduce and study a system of nonlinear implicit variational
inclusions in real Banach spaces. By using the resolvent technique for the
me~accretive mapping, we establish the equivalence between the system
of nonlinear implicit variational inclusions and the system of resolvent
equations in real Banach spaces.

The rest of this paper is organized as follows. In section 2 some
preliminary results will be established. In section 3 we shall deal with the
approximation solvability of a system of nonlinear of implicit variational
inclusions in g-uniformly smooth Banach spaces. Finally in section 4 we
give the proof of the convergence of iterative sequences generated by the
algorithms in real Banach spaces for this system of nonlinear of implicit
variational inclusions without compactness.

2. Preliminaries

Let E be an arbitrary real Banach space and let Jy(p > 1) denote
the generalized duality mapping from E into 2F" given by

Jp(z) = {f € E* : (2, f) = |l«|”, and | f|| = l|lz[P~},

where E* denotes dual space of E and (-, -) denotes the generalized du-
ality pairing. In particular, J; is called the normalized duality mapping
and it is usually denoted by J. It is well known (see, for example,
[12]-[13]) that J,(z) = ||z||P~2J () if z # 0.

DEFINITION 2.1 [1]. Let A : D(A) C E — 2F be a set-valued map-
ping.

(1) The mapping A is said to accretive if, for any z,y € D(A), u €
Az, v € Ay, there exists jp(r — y) € Jp(x — y) such that

(u—v,5p(x—y)) 20
(2) The mapping A is said to be m-accretive if A is accretive and
I+ pA)(D(A)) = F for every (equivalently, for some) p > 0, where I is
0

the identity mapping, (equivalently, if A is accretive and (I+A)(D(4)) =
E).
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REMARK 2.1. Tt is well known that, if £ = E* = H is a Hilbert
space, then A : D(A) ¢ H — 2 is an m-accretive mapping if and
only if A: D(A) C H — 2¥ is a maximal monotone mapping (see, for
example, [2]).

Let E be a real Banach space, 6 is a zero element in E. Let T,g :
E — FE are two single-valued mappings. Suppose that A : F — 2F
is an m-accretive mapping. We consider a system of nonlinear im-
plicit variational inclusion (abbreviated as SNIVI): determine elements
¥, y*, z* € E such that

(2.1) 0ol (y*)+g(z*) —gy") + A(g9(z*)) for a >0,
(2.2) 0 € BT(2") +9(y*) — 9(z") + A(g(y™)) for >0,

and
(2.3) 0 €T (z*) + g(2") — g(z*) + A(g(z*)) for v > 0.

Below are some special cases of SNIVI (2.1), (2.2) and (2.3).

(1) If E = H is a Hilbert space and A = J¢, where ¢ : H —
R U {400} is a proper convex lower semicontinuous function on H and
Oy denotes the subdifferential of function ¢, then SNIVI (2.1), (2.2) and
(2.3) is equivalent to finding z*, y*, z* € H such that

(@T(y*) + g(z*) — 9(y"), = — g(=))
)

(2.4) > ¢(g(z*)) —p(z) for all z € H and for o > 0,
(BT (%) + 9(y") — 9(2"), = — g(y"))

(2.5) > o(g9(y*)) —e(z) forall z € H and for 8 > 0,

and

(T (2*) + 9(z") = g(z"), = — g(z"))
(2.6) > (9(2*)) —p(z) forall z € H and for v > 0.

(2) If E = H is a Hilbert space, g = I is the identity mapping, and
¢ is the indicator function of a closed convex subset K in H, that is,

o) = Ixw) ={ O Lok

+o00, other,
then a system of nonlinear variational inclusion (2.4), (2.5) and (2.6) is
equivalent to finding x*, y*, 2* € K such that

(2.7) (aT(y")+z*—y*, z—2*) >0 forallz € K and for a > 0,

(28) (BT(z")+y*—2*, z—y*) >0 forallzc K and for 3> 0,
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and
(2.9) (YT(z*)+z2z*—2% z~2*)>0 forall z€ K and for v > 0.

(3) For z* = y* = z* and @ = # = v = 1, the system of nonlinear
variational inequality (2.7)-(2.9) reduces to the following standard non-
linear variational inequality (NVI) problem : find an element z* € K
such that

(T(z*), z—2*) >0 forall z € K.

DEFINITION 2.2 [1]. Let 4 : D(A) C E — 2% be an m-accretive
mapping. Then, the resolvent operator associated with A defined by

Ra(u)=(I+A)"Yu) foralluekE,
where I is the identity operator.

REMARK 2.2. It is well known that R4 is a single-valued and non-
expansive (see [1]).

LEMMA 2.1. Elements x*,y*, 2* € E form a solution set of the SNIVI

(2.1), (2.2) and (2.3) if and only if

(2.10) 9(z") = Ralg(y*) — oT(y")] for a >0,
(2.11) 9(y") = Ralg(z") — T(z")]  for >0,
and

(2.12) g(z*) = Ralg(z*) — T (z*)] fory>0.

Proof. By using Definition 2.2, we can prove this lemma immediately.
O

3. Convergence theorem in g-uniformly smooth Banach
spaces

In this section, we always assume that E be a g-uniformly smooth
Banach space (1 < ¢ < 2). It is easy to know that the generalized
duality mapping J, : B — 2E" is single-valued. We shall denote the
single-valued duality map by 7.

DEFINITION 3.1. Let T, ¢ : E — E are two single-valued mappings.
(i) T is said to be r-strongly accretive with respect to g, r € (0, 1),
if, for each z,y € E, we have

(T(x) — T(y), Jol9(x) — 9(3))) 2 llg(z) — g(v)||*.
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(ii) T is said to be s-Lipschitzian continuous with respect to g if
there exists a constant s > 1 such that

17'(z) = TW)|| < sllg(z) —gly)|| forallz,ye€ E.
We also need the following lemma.

LEMMA 3.1 [12]. If E is real g-uniformly smooth Banach space, then
there exists a constant ¢, > 1 such that

Iz +yll? < ll2]? + ¢(y, Jol2)) + callyll®,  Va,y € E.

Before we discuss the approximation-solvability of the SNIVI (2.1)-
(2.3), we need to introduce the following iterative algorithm.

ALGORITHM 3.1. For an arbitrarily chosen initial point z¢g € E,
compute the sequences {z,}, {yn} and {2,} by the following iterative
algorithm:

9(@ns1) = (1 = an)g(zn) + anRalg(yn) — aT(ys)]  for a >0,
9(yn) = Ralg(2zn) — T(2n)]  for 8 >0,
9(zn) = Ralg(zn) — 7T (zs)]  for v >0,
0<a,<1,n=0,1,...,and Y > ;an = 0.
If E = H is a Hilbert space, ¢ = I is the identity mapping and

A = 9y, where ¢ is the indicator function of a closed convex subset K
in H, then algorithm 3.1 reduces to the following algorithm.

ALGORITHM 3.2. For an arbitrarily chosen initial point zo € E,
compute the sequences {z,}, {yn} and {z,} by the following iterative
algorithm:

Tp+1 = (1 —an)z, + anPK[yn —aT(yn)] fora>0,

yn = Pg(zn — T (z)] for 8 >0,

2n = Pglzn — T (2,)] for v >0,
0<a,<1,n=0,1,...,and Y 2 ;a, = co. Here, Pk is the projection
of H onto K.

We now present, based on Algorithm 3.1, the approximation-solvabili-
ty of the SNIVI (2.1), (2.2) and (2.3) involving r-strongly accretive and
s-Lipschitzian mappings with respect to a single-valued map g, respec-
tively, in a g-uniformly smooth Banach space setting.

THEOREM 3.2. Let FE ba a real g-uniformly smooth Banach space
and A : E — 2F be an m-accretive mapping. Let T : E — E are r-
strongly accretive and s-Lipschitz continuous mappings with respect to
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g, respectively, and g : E — E be invertible. Let z*,y*,z* € E form a
solution set of the SNIVI (2.1)-(2.3) and the sequences {z,}, {y»} and
{zn} be generated by Algorithm 3.1. Then, we have the following

(1) The estimates
(i) lg(@n+1) = g(@*)ll < (1 = an)llg(za) — g(2*)l + anallg(yn) — g(y™)|,
(i) llg(wn) — 9wl < l9(zn) = g(=") for 0 < B < (gr/cqs?)/ "7,
(ifi) llg(zn) = 9(z)| < llg(an) = 9(=*)|| for 0 <y < (qr/egs’)"/ @™,
(iv) lg(@n+1) = 9@l < (1 = an)llg(za) = g(a*)[| + anollg(zn) — g(z)ll,
where 0 = (1 — qar + cqaqsq)l/ 9, and c, is a constant appearing in
Lemma 3.1.
(2) The sequence {z, } converges to z* for0 < 3, < (qr/cqsq)l/(q—l),
and 0 < a< (qr/cqsq)l/(q_l) X
Proof. Since (z*,y*,2*) is a solution of the SNIVI (2.1), (2.2) and
(2.3), it follows from Lemma 2.1 that

9(z*) = Ralg(y*) — aT(y")],
9(y*) = Ralg(2") — BT (2")],

9(z") = Ralg(z") — 7T(z")].
Applying Algorithm 3.1 and Remark 2.2, we have

(3.1) l9(@n+1) — g(z)l
= ”(1 - an)g(xn) + anRA[g(yn) - O‘T(yn)]
— (1 —an)g(z") — anRalg(y™) — oT(y")]|
< (1= an)liglzn) — gl@)|i
+ anl|Ralg(yn) — oT'(yn)] — Ralg(y") — oT'(y")]|
< (1 - an)”g(mn) - g(CIJ*)”
+ anllg(yn) — 9(v") — a(T(yn) — T

Since T is r-strongly accretive and s-Lipschitzian continuous with
respect to g, respectively, we have by Lemma 3.1 that

(3:2) llg(yn) = 9(¥*) — (T (yn) — T(y"N|?
< Mgyn) — 9y = ag(T(yn) — T(¥"), Jo(9(yn) — 9(y™)))
+ cga?||T(yn) — T(y")||?
< lg(yn) — 9! — qarllg(yn) — g7 + cqa?s%|g(yn) — g(y™)|1?
= (1-qar+cea?s)liglys) — gy
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It follows that

(3-3) llg(zn+1)—g(z)| < (1-an)llg(zn) —g(z*) | +ancllg(yn) — gy,

where 0 = (1 — gar + c,a?s9)1/49.
Next, we consider

l9(yn) — 9(w)ll = |Ralg(zn) — BT (2n)] — Ralg(z") — BT (2")]|
< llg(zn) — 9(2") = B(T(2) = T(z")II.
Similar to (3.2), we get
l9(yn) — (")l < d1llg(zn) — g(=")II,
where 6; = (1 — g08r + cqﬂqsq)l/q. This implies that

(3.4) l9(yn) ~ g(¥)Il < llg(zn) — g(2™)|| for & < 1.

Similarly, we have
(3:5) llg(zn)—g(=")Il < 82llg(mn) —g(z")II < llg(zn)—g(z™)| for 6 <1,
where 6 = (1 — gyr + cq'yqsq)l/q.

It follows from (3.3), (3.4) and (3.5) that

(3.6) l9(zns1) — g(z")]
(1 = an)llg(za) — g(&)| + ancllg(za) — g(=")||
= [1-(1-o)an]llglzn) — g(z")l

n

< I - @ -o)allg(zo) — g(a)l-

1=0

AN

Since )2 a is divergent and o = (1 — gar + ¢,a%5%)/9 < 1 under
the assumptions of the theorem, it implies by [11] that

n
lim H[l — (1 —0o)a;] =0.
i=0

As a result, the sequence {g(z,)} converges to g(z*), by (3.5) the se-
quence {g(zn)} converges to g(z*), and by (3.4) the sequence {g(y.)}
converges to g(y*) as well. Since g is invertible, thus

. N . X . *
lim z, =2*, limy,=v", lim z,=2z"
n—oo n—00 n—oo

This completes the proof. O
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REMARK 3.1. If a, =a (a € (0,1)) for all n > 1, then we get from
(3.6)

l9(znt1) — g(z™)|
< (1= -0)a)lgzn) — g(z™)}
= pllg@n) —g(=z)| < -
< " g(zo) — g(z*)l,
where p=1— (1 —o0)a € (0,1). Thus, the algorithm 3.1 is effective.

Let E = H is a Hilbert space, we know that E is 2-uniformly smooth
and ¢co = 1 by [12]. And let ¢ = I (the identity mapping). Then,
Theorem 3.1 reduces to the following corollary.

CoROLLARY 3.1. Let H ba a real Hilbert space and T : K —
H an r-strongly accretive and s-Lipschitz continuous mappings from a
nonempty closed convex subset K into H. Let z*,y*,2* € K form a
solution set for the SNIVI (2.7)-(2.9) and the sequences {z,}, {yn} and
{zn} be generated by Algorithm 3.2. Then, we have the following

(1) The estimates
@) llzn+1 — 2" < (1 = an)llzn — 2*|| + anollyn — ¥,
(i) lln — 5°1l < 120 — 2*l| for 0 < B< 2r/s?,
(iii) ||zn — 2*|| < ||lZn — 2*|| for 0 <y < 2r/s?,
(iv) [£ns1 — 2*|| £ (1 = an)l|zn — 27| + anollzn — 2],
where 0 = (1 — 2ar + o?s?)1/2.

(2) The sequence {x,} converges to z* for 0 < 3, v < 2r/s?, and
0<a<2r/s?

REMARK 3.2. Corollary 3.1 can be considered as an extension of
theorem 2.1 in [10] that from a system of nonlinear variational inequality
with two variables to a system of nonlinear variational inequality with
three variables.

4. Convergence theorem in Banach spaces

In this section, we always assume that E is a real Banach space. For
an = 1(n = 0,1,...), then algorithm 3.1 be reduced to the following
algorithm.

ALGORITHM 4.1. For an arbitrarily chosen initial point zg € E,
compute the sequences {rx}, {yx} and {2} by the following iterative
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algorithm:
9(xnt1) = Ralg(yn) — aT(yn)] for a >0,
9(yn) = Ralg(zn) — BT(zn)]  for 8> 0,
9(zn) = Ralg(zy) — ¥T(z,)] for v > 0.
In the following, we shall investigate iterative sequences {z,}, {yn},

and {z,} generated by the algorithm 4.1, which converge to the solution
(z*,y*, z*) of SNIVI (2.1)-(2.3).
Let us recall the following definition.
DEFINITION 4.1. An operator g: E — FE is called:
(i) A-strongly accretive, A € (0,1), if, for any z,y € E, there exists
j(z —y) € J(x — y) such that
(9(2) = 9(v),i(z — v)) = Az — yI|*.

(ii) p-Lipschitzian continuous, if there exists a constant u > 1 such
that

lg(z) — gl < pllz —yl, =,yek.
In the sequel we need the following lemma.

LEMMA 4.1. (See [5, 8].) Let E be a real Banach space and J : E —
2E" be the normalized duality mapping. Then, for any z,y € E

(41) llz+yl? < llzl* +2(y, j(z +y)) for all j(z+y) € J(z +y).

Now we prove the following theorem.

THEOREM 4.2. Let E be a real Banach space and A : E — 2% be
an m-accretive mapping. Let T : F — FE is s-Lipschitzian continuous
mapping, and g : E — E be p-Lipschitzian continuous and (g — I) is
k-strongly accretive, where u > 1 and k € (0,1) both are constants.
Let (z*,y*, 2*) is a solution of the SNIVI (2.1)-(2.3) and the sequence
{z.}, {yn}, and {2,} be generated by Algorithm 4.1. If the following
conditions are satisfied,

(1 2k+1—p?
42) 1<pu<vV2k+1 -, = -
(42) 1<p< +1, 0<a, ﬁ,7<mln{s, 506+ s }

then {zn}, {yn}, and {z,} converge to =*, y*, and z*, respectively.
Proof. For convenience, letting
unt1 = g(yn) —aT(yn), u" =g(y") —aT(y"),
Uny1 = g(z) — BT(zn), o™ =g(z") - BT(2"),
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W1 = 9(2n) =T (2n),  w* = g(z*) — 7T (z").
Since (z*,y*, 2*) is a solution of the SNIVI (2.1)-(2.3), it follows from
Lemma 2.1 that
g9(z%) = Ra(u”), g(y*) = Ra(v*), ¢(z") = Ra(w").

Since T is s-Lipschitzian continuous and g is u-Lipschitzian continuous,
it follows from Algorithm 4.1 and Lemma 4.1 that, for any j(un4+1—u*) €

J(Ung1 — u*),

l|uns1 — u*||?

lg(yn) — 9(v*) — (T (ya) — T

lg(yn) = g )I* — 20(T(yn) — T(Y"), (Un1 — u*))
Wollyn — 11 + 20| T(yn) = T - Nltnss — '

12 llyn — y* |12 + 208y — ¥ || - lunsr — ¥
1 lyn = ¥ 112 + aslllyn — ¥* 1 + luns1 — u*||
(1® + as)|lyn — ¥*I1* + as|unr — u*|,

IA A IA A

’]

which implies that
u? +as

(4.3) lunsr = w1 < S———llvn ~ v"II*.
Similarly, we have

2

po+ Bs .

(4.4) |vns1 — v*)|? < 1— s ll2n — 2*|I%.

2

+vs

4.5 — w2 < B o, — a2
(45 s = w I < 222 = 07|

Since g — I is k-strongly accretive, from Algorithm 4.1 and Lemma 4.1,
it follows that, for any j(y, — y*) € J(yn — ¥*),

lyn —*1I2

IRA(vn41) = Ra(v®) = [9(yn) = yn — (9(y") — yOII?

IRA(n41) = Ra(w)I? = 2((9 = D(ya) — (9 = D), G(yn —¥*))
lvn+1 —o*II* = 2kllyn — v*|1%,

Il

<
<

which implies that

[

1
) —*I2 <
(4.6) llun —¥*|)° < H 1
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Similarly, we have

1
. _ *2<__~ an*1l2
(@7 lon = 2" < g lmss — 0,
and
. 1 .
(4.8) |Mm4—$H2§2k+ﬂWm4—UH?

From (4.3)-(4.8), we get

Hxn+12— z*?
< hlﬁ%”uﬂ%—l —v*? (hl ~ (2% _/:21;10? aS))
2
< Mary 1;L(15j DL
< h1h22—k-i—lllwn+1 —w'” (h2 T 2k ﬁ;r(lﬁ - ﬁs))
< hihohsl|lz, — z*|| <h3 = (2 fl;(lvi ws))

= hljz, —2*|%,

where h = hihshs. Now we prove that 0 < A < 1. In fact, from the
condition (4.2), it follows that

1
O<a<-, 0<2k+1-—p?
and
2(k 4+ 1)sa < 2k 4+ 1 — p?,
which implies that

,u2+as

0<M=ZriDa —as)

<1

Similarly, we have
O0<hy <, and 0<hy <l

Thus 0 < h < 1. As a result, the sequence {z,} converges to z*, by
(4.7) and (4.5) the sequence {z,} converges to z*, and by (4.4)-(4.7) the
sequence {y,} converges to y* as well. This completes the proof. a
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REMARK 4.1. It is easy to know that if f : E — F is a continu-
ous and k-strongly accretive mapping, then f maps E onto E (see, for
examples, [5, 14]).

REMARK 4.2. In [5], Huang studied a new class of generalized set-
valued implicit variational inclusions in real Banach spaces. In Theorem
4.1, we investigate a system of single-valued implicit variational inclu-
sions in real Banach spaces, and the meaning of parameters of o, 3,7
are different from that the parameter p in [5].
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