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A SYSTEM OF NONLINEAR SET-VALUED IMPLICIT
VARIATIONAL INCLUSIONS IN REAL BANACH SPACES

Chuanzhi Bai and Qing Yang

Abstract. In this paper, we introduce and study a system of nonlin-
ear set-valued implicit variational inclusions (SNSIVI) with relaxed co-
coercive mappings in real Banach spaces. By using resolvent operator
technique for M -accretive mapping, we construct a new class of iterative
algorithms for solving this class of system of set-valued implicit varia-
tional inclusions. The convergence of iterative algorithms is proved in
q-uniformly smooth Banach spaces. Our results generalize and improve
the corresponding results of recent works.

1. Introduction

In [4], Fang and Huang first introduced the concept of H-accretive opera-
tors in Banach spaces. Obviously, the class of H-accretive operators provides
a unifying frameworks for classes of maximal monotone operators, m-accretive
operators and H-monotone operator [5]. Very recently, Chang, Joseph Lee, and
Chan [2] introduced and studied a class of generalized system for relaxed coco-
ercive variational inequalities in Hilbert spaces which extended and improved
the main results in [6, 8, 9].

Inspired and motivated by the results in [1, 2, 4, 6], the purpose of this paper
is to introduce and study a system of nonlinear implicit variational inclusions in
Banach spaces. By using the resolvent operator technique for the M -accretive
mapping, we develop a new class of iterative algorithms to solve a class of
relaxed cocoercive set-valued implicit variational inclusions associated with M -
accretive mappings in q-uniformly smooth Banach spaces. Our results improve
and extend the corresponding results of Chang, Joseph Lee, and Chan [2].

Let E be an arbitrary real Banach space and let Jq (q > 1) denote the
generalized duality mapping from E into 2E∗ given by

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖q, ‖f‖ = ‖x‖q−1},
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where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality
pairing. In particular, J2 is called the normalized duality mapping and it is
usually denoted by J .

The modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined
by

ρE(t) = sup
{

1
2
(‖x + y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

A Banach space E is called uniformly smooth if limt→0
ρE(t)

t = 0. E is called
q-uniformly smooth if there exists a constant c > 0 such that

ρE(t) ≤ ctq, q > 1.

It is known that, Jq is single-valued if E is uniformly smooth.

Definition 1.1. Let E be a real uniformly smooth Banach space, and M :
E → E be a single-valued operator. Then M is said to be:

(i) accretive, if

〈Mx−My, Jq(x− y)〉 ≥ 0, ∀x, y ∈ E;

(ii) strictly accretive, if M is accretive and

〈Mx−My, Jq(x− y)〉 = 0 if and only if x = y;

(iii) strongly accretive, if there exists a constant r > 0 such that

〈Mx−My, Jq(x− y)〉 ≥ r‖x− y‖q, ∀x, y ∈ E.

Let C(E) denote the family of all nonempty compact subsets of E. We
introduce a new definition as follows.

Definition 1.2. Let E be a real uniformly smooth Banach space, T : E×E →
E and g : E → E be two single-valued mappings, and V : E → C(E) be a
set-valued mapping.

(i) T is said to be relaxed (ω, r)-cocoercive with respect to (V, g) in the
first variable, if there exist constants w, r > 0 such that for all x1, x2 ∈ E,
u1 ∈ V (x1) and u2 ∈ V (x2)

〈T (u1, v1)− T (u2, v2), Jq(g(x1)− g(x2))〉
≥ (−ω)‖T (u1, v1)− T (u2, v2)‖q + r‖x1 − x2‖q, ∀v1, v2 ∈ E.

(ii) T is said to be µ-Lipschitz continuous, if there exists a constant µ > 0
such that for all u1, u2 ∈ E

‖T (u1, v1)− T (u2, v2)‖ ≤ µ‖g(u1)− g(u2)‖, ∀v1, v2 ∈ E.

Remark 1.1. If E = H is a Hilbert space, g = I (the identity map on E) and
V : E → E is a single-valued with V = I, then (i) of Definition 2.2 reduces to
the definition of relaxed (γ, r)-cocoercive mappings in [2].
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Definition 1.3. The set-valued operator W : E → C(E) is said to be H̃-
Lipschitz continuous, if there exists a constant ξ > 0 such that

H̃(W (u),W (v)) ≤ ξ‖u− v‖, ∀u, v ∈ E,

where H̃(·, ·) is the Hausdorff metric on C(E).

Definition 1.4. Let M : E → E be a single-valued operator and A : E → 2E

be a multivalued operators. A is said to be M -accretive if A is accretive and
(M + λA)(E) = E holds for all λ > 0.

Remark 1.2. From [4], it is easily established that if M = I (the identity map on
E), then the definition of I-accretive operators is that of m-accretive operators.
Conversely, the Example 2.1 in [4] shows that an m-accretive operator need not
be M -accretive for some M .

Remark 1.3. It is well known that, if E = H is a Hilbert space, then A : D(A) ⊂
H → 2H is an m-accretive mapping if and only if A : D(A) ⊂ H → 2H is a
maximal monotone mapping (see, for example, [3]).

Let M, g : E → E, T : E × E → E be three single-valued operators, V, W :
E → C(E) be two set-valued mappings and A : E → 2E be a M -accretive
operator. We consider a system of nonlinear implicit set-valued variational
inclusion (abbreviated as SNISVI) problem as follows: to find x∗, y∗ ∈ E,
u∗ ∈ V (x∗), v∗ ∈ W (y∗) such that

(1) θ ∈ ρT (v∗, u∗) + M(x∗)− g(y∗) + A(x∗) for ρ > 0,

(2) θ ∈ ηT (u∗, v∗) + M(y∗)− g(x∗) + A(y∗) for η > 0,

where θ is a zero element in E. Below are some special cases of the SNISVI
problem (1) and (2).

(i) If V, W : E → E are two single-valued mappings, then the SNISVI
problem (1) and (2) can be replaced by finding x∗, y∗ ∈ E such that

(3) θ ∈ ρT (W (y∗), V (x∗)) + M(x∗)− g(y∗) + A(x∗) for ρ > 0,

(4) θ ∈ ηT (V (x∗),W (y∗)) + M(y∗)− g(x∗) + A(y∗) for η > 0.

(ii) If V = W = I, then the system of nonlinear implicit variational inclusion
(abbreviated as SNIVI) problem (3) and (4) is equivalent to finding x∗, y∗ ∈ E
such that

(5) θ ∈ ρT (y∗, x∗) + M(x∗)− g(y∗) + A(x∗) for ρ > 0,

(6) θ ∈ ηT (x∗, y∗) + M(y∗)− g(x∗) + A(y∗) for η > 0.

(iii) If E = H is a Hilbert space, M = I and A = ∂φ, where φ : H →
R ∪ {+∞} is a proper convex lower semicontinuous function on H and ∂φ
denotes the subdifferential of function φ, then the SNIVI problem (5) and (6)
is equivalent to finding x∗, y∗ ∈ H such that

(7) 〈ρT (y∗, x∗) + x∗ − g(y∗), x− x∗〉 ≥ φ(x∗)− φ(x), ∀ x ∈ H and ρ > 0,
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(8) 〈ηT (x∗, y∗) + y∗ − g(x∗), x− y∗〉 ≥ φ(y∗)− φ(x), ∀x ∈ H and η > 0.

(iv) If E = H is a Hilbert space, M = g = I and φ is the indicator function
of a closed convex subset K in H, that is,

φ(u) = IK(u) =
{

0, u ∈ K,
+∞, other,

then the SNIVI problem (7) and (8) is equivalent to finding x∗, y∗ ∈ K such
that

(9) 〈ρT (y∗, x∗) + x∗ − y∗, x− x∗〉 ≥ 0, ∀ x ∈ H and ρ > 0,

(10) 〈ηT (x∗, y∗) + y∗ − x∗, x− y∗〉 ≥ 0, ∀ x ∈ H and η > 0,

which is called a system of nonlinear variational inequality (SNVI) introduced
and studied by Chang, Joseph Lee, and Chan [2].

Let M : E → E be a strictly accretive operator and A : E → 2E is a M -
accretive operator. Fang and Huang [4] defined the resolvent operator JA,λ

M :
E → E associated with A,M and λ as follows:

JM
A,λ(u) = (M + λA)−1(u), ∀u ∈ E.

From the proof of Theorem 2.3 in [4], it is easy to obtain the following result.

Lemma 1.5. Let M : E → E be a strongly accretive operator with constant
k > 0 and A : E → 2E is a M -accretive operator. Then the resolvent operator
JM

A,λ : E → E is Lipschitz continuous with constant 1
k , i.e.,

‖JM
A,λ(x)− JM

A,λ(y)‖ ≤ 1
k
‖x− y‖, ∀x, y ∈ E.

2. Main results

Throughout this section, we always let E a real q-uniformly smooth Banach
space. In [10], Xu proved the following result.

Lemma 2.1. If E is a real q-uniformly smooth Banach space, then there exists
a constant cq ≥ 1 such that

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q, ∀x, y ∈ E.

For convenience, let JM
A,1 := JM

A . To obtain the approximate solution of the
SNISVI problem (1) and (2), we first give a characterization the solution of
problem (1) and (2) by using the resolvent operator JM

A .

Lemma 2.2. Let A : E → 2E is a M -accretive. Then (x∗, y∗, u∗, v∗) is a
solution to the SNISVI problem (1) and (2) if and only if (x∗, y∗, u∗, v∗) satisfies

x∗ = JM
A [g(y∗)− ρT (v∗, u∗)] for ρ > 0,

y∗ = JM
A [g(x∗)− ηT (u∗, v∗)] for η > 0.

Proof. By using the definition of JM
A , we can prove this lemma immediately. ¤
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Based on Lemma 2.2, we construct the following iterative algorithm for
solving problem (1) and (2).

Algorithm 2.1. For given x0, y0 ∈ E, u0 ∈ V (x0), v0 ∈ W (y0), compute the
sequences {xn}, {yn}, {un} and {vn} from the iterative schemes

un ∈ V (xn) : ‖un − un+1‖ ≤ H̃(V (xn), V (xn+1)),

vn ∈ W (yn) : ‖vn − vn+1‖ ≤ H̃(W (yn), W (yn+1)),
xn+1 = (1− αn)xn + αnJM

A [g(yn)− ρT (vn, un)] for ρ > 0,

yn = (1− βn)xn + βnJM
A [g(xn)− ηT (un, vn)] for η > 0,

where {αn} and {βn} are sequences in [0, 1].
If T : E → E is a univariate mapping and βn = 1, then the Algorithm 2.1

reduces to the following.

Algorithm 2.2. For given x0, y0 ∈ E, u0 ∈ V (x0), v0 ∈ W (y0), compute the
sequences {xn}, {yn}, {un} and {vn} from the iterative schemes

un ∈ V (xn) : ‖un − un+1‖ ≤ H̃(V (xn), V (xn+1)),

vn ∈ W (yn) : ‖vn − vn+1‖ ≤ H̃(W (yn), W (yn+1)),
xn+1 = (1− αn)xn + αnJM

A [g(yn)− ρT (vn)] for ρ > 0,

yn = JM
A [g(xn)− ηT (un)] for η > 0,

where αn ∈ [0, 1], ∀n ≥ 0.

Remark 2.1. If E = H is a Hilbert space, M = g = I and A = ∂φ, where φ
is the indicator function of a closed convex subset K in H, then Algorithm 2.1
reduces to the Algorithm 2.1 in [2].

In order to prove our main results we need the following lemma:

Lemma 2.3 ([2]). Let {an}, {bn} and {cn} be three nonnegative real sequences
satisfying the following conditions:

an+1 ≤ (1− λn)an + bn + cn, ∀n ≥ n0,

where n0 is some nonnegative integer, λn ∈ (0, 1) with
∑∞

n=0 λn = ∞, bn =
o(λn) and

∑∞
n=0 cn < ∞, then an → 0 (as n →∞).

We now present, based on Algorithm 2.1, the approximation-solvability of
the SNISVI problem (1) and (2) involving a mapping T : E ×E → E which is
relaxed (γ, r)-cocoercive with respect to (V, g) and (W, g) in the first variable,
respectively.

Theorem 2.4. Let E be a real q-uniformly smooth Banach space, M : E → E
be a strongly accretive operator with constant k and A : E → 2E be a M -
accretive operator. Let g : E → E be σ-Lipschitz continuous. Assume that
V,W : E → C(E) be H̃-Lipschitz continuous with constant β > 0 and ξ > 0,
respectively. Let T : E × E → E be relaxed (γ, r)-cocoercive with respect to
(V, g) and (W, g) in the first variable, respectively. And let T : E × E → E
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be µ-Lipschitz continuous in the first variable. Suppose that (x∗, y∗, u∗, v∗) ∈
E×E×E×E is a solution to the SNISVI problem (1) and (2) and that {xn},
{yn}, {un}, and {vn} are the sequences generated by Algorithm 2.1. If the
following conditions are satisfied:

(i)
∞∑

n=0

αn = ∞;

(ii)
∞∑

n=0

(1− βn) < ∞;

(iii) 0 < ρ < q−1

√
q(r − γµqξq)

cqµqξq
, 0 < η < q−1

√
q(r − γµqβq)

cqµqβq
;

(iv) r > max{γµqξq, γµqβq}, σ ≤ k,
then the sequence {xn}, {yn}, {un} and {vn} converges strongly to x∗, y∗, u∗

and v∗ in E, respectively.

Proof. Since (x∗, y∗, u∗, v∗) is a solution to the SNISVI problem (1) and (2), it
follows from Lemma 2.2 that

x∗ = JM
A [g(y∗)− ρT (v∗, u∗)], y∗ = JM

A [g(x∗)− ηT (u∗, v∗)].

It follows from Algorithm 2.1 and Lemma 1.5 that

‖xn+1 − x∗‖ = ‖(1− αn)xn + αnJM
A [g(yn)− ρT (vn, un)](11)

− (1− αn)x∗ − αnJM
A [g(y∗)− ρT (v∗, u∗)]‖

≤ (1− αn)‖xn − x∗‖+ αn‖JM
A [g(yn)− ρT (vn, un)]

− JM
A [g(y∗)− ρT (v∗, u∗)]‖

≤ (1− αn)‖xn − x∗‖
+

αn

k
‖g(yn)− g(y∗)− ρ(T (vn, un)− T (v∗, u∗))‖.

Since T is relaxed (γ, r)-cocoercive with respect to (W, g) and µ-Lipschitz
continuous in the first variable, respectively, we have by Lemma 2.1 and the
ξ − H̃-Lipschitz continuity of W that

‖g(yn)− g(y∗)− ρ(T (vn, un)− T (v∗, u∗))‖q(12)

≤ ‖g(yn)− g(y∗)‖q − ρq〈T (vn, un)− T (v∗, u∗), Jq(g(yn)− g(y∗))〉
+ cqρ

q‖T (vn, un)− T (v∗, u∗)‖q

≤ σq‖yn − y∗‖q + cqρ
qµq‖vn − v∗‖q + ρqγ‖T (vn, un)− T (v∗, u∗)‖q

− qρr‖yn − y∗‖q

≤ σq‖yn − y∗‖q + cqρ
qµqξq‖yn − y∗‖q

+ ρqγµq‖vn − v∗‖q − qρr‖yn − y∗‖q

≤ σq

[
1 +

cqρ
qµqξq + ρqγµqξq − qρr

σq

]
‖yn − y∗‖q.
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Substituting (12) into (11), we get by conditions (iii) and (iv) that

(13)
‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+

σ

k
αnΩ1‖yn − y∗‖

≤ (1− αn)‖xn − x∗‖+ αnΩ1‖yn − y∗‖,

where Ω1 = q

√
1 + cqρqµqξq+ρqγµqξq−qρr

σq < 1 (By condition (iii)).
Next, we make an estimation for ‖yn − y∗‖. Again applying Algorithm 2.1

and Lemma 1.5, we have
(14)
‖yn − y∗‖ = ‖(1− βn)xn + βnJM

A [g(xn)− ηT (un, vn)]

− (1− βn)y∗ − βnJM
A [g(x∗)− ηT (u∗, v∗)]‖

≤ (1− βn)‖xn − y∗‖+
βn

k
‖g(xn)−g(x∗)−η(T (un, vn)−T (u∗, v∗))‖

≤ (1− βn)‖xn − x∗‖+ (1− βn)‖x∗ − y∗‖

+
βn

k
‖g(xn)− g(x∗)− η(T (un, vn)− T (u∗, v∗))‖.

Since T is relaxed (γ, r)-cocoercive with respect to (V, g) and µ-Lipschitz con-
tinuous in the first variable respectively, and V is β − H̃-Lipschitz continuous,
similar to the proof of (12), we obtain that

(15)
‖g(xn)− g(x∗)− η(T (un, vn)− T (u∗, v∗))‖q

≤ σq

[
1 +

cqη
qµqβq + ηqγµqβq − qηr

σq

]
‖xn − x∗‖q.

Combining (14), (15) and condition (iv), we have
(16)

‖yn − y∗‖ ≤ (1− βn)‖xn − x∗‖+ (1− βn)‖x∗ − y∗‖+
σ

k
βnΩ2‖xn − x∗‖

≤ (1− βn)‖xn − x∗‖+ (1− βn)‖x∗ − y∗‖+ βnΩ2‖xn − x∗‖
≤ ‖xn − x∗‖+ (1− βn)‖x∗ − y∗‖,

where Ω2 = q

√
1 + cqηqµqβq+ηqγµqβq−qηr

σq < 1 (By condition (iii)).
Substituting (16) into (13), we get
(17)
‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αnΩ1[‖xn − x∗‖+ (1− βn)‖x∗ − y∗‖]

≤ (1− αn(1− Ω1))‖xn − x∗‖+ Ω1(1− βn)‖x∗ − y∗‖.
Taking an = ‖xn−x∗‖, λn = αn(1−Ω1), bn = 0 and cn = Ω1(1−βn)‖x∗−y∗‖
in Lemma 2.3, we know that all conditions in Lemma 2.3 are satisfied, and so
xn → x∗ ∈ E (as n →∞). Since V is β-Lipschitz continuous, we obtain

‖un − u∗‖ ≤ H̃(V (xn), V (x∗)) ≤ β‖xn − x∗‖ → 0, n →∞,

i.e., un → u∗ ∈ E (as n →∞). Similarly, we have that vn → v∗, n →∞.
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We now show that u∗ ∈ V (x∗) and v∗ ∈ W (y∗). In fact,

d(u∗, V (x∗)) ≤ ‖u∗ − un‖+ d(un, V (x∗))

≤ ‖u∗ − un‖+ H̃(V (xn), V (x∗))

≤ ‖u∗ − un‖+ β‖xn − x∗‖ → 0 as n →∞,

where d(u∗, V (x∗)) = inf{‖u∗−z‖ : z ∈ V (x∗)}. This implies that u∗ ∈ V (x∗).
In a similar way, one show that v∗ ∈ W (y∗). This completes the proof. ¤

Remark 2.2. If E = H is a Hilbert space, M = g = I and A = ∂φ, where φ
is the indicator function of a closed convex subset K in H, then q = 2, c2 = 1
(by [10]), σ = k = ξ = β = 1, and Theorem 2.4 reduces to Theorem 3.1 in [2].
Obviously, Theorem 2.4 extends and improves the main results in Verma [8, 9].
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