• Title/Summary/Keyword: unbounded operators

Search Result 34, Processing Time 0.016 seconds

Unbounded Scalar Operators on Banach Lattices

  • deLaubenfels, Ralph
    • Honam Mathematical Journal
    • /
    • v.8 no.1
    • /
    • pp.1-19
    • /
    • 1986
  • We show that a (possibly unbounded) linear operator, T, is scalar on the real line (spectral operator of scalar type, with real spectrum) if and only if (iT) generates a uniformly bounded semigroup and $(1-iT)(1+iT)^{-1}$ is scalar on the unit circle. T is scalar on [0, $\infty$) if and only if T generates a uniformly bounded semigroup and $(1+T)^{-1}$ is scalar on [0,1). By analogy with these results, we define $C^0$-scalar, on the real line, or [0. $\infty$), for an unbounded operator. We show that a generator of a positive-definite group is $C^0$-scalar on the real line. and a generator of a completely monotone semigroup is $C^0$-scalar on [0, $\infty$). We give sufficient conditions for a closed operator, T, to generate a positive-definite group: the sequence < $\phi(T^{n}x)$ > $_{n=0}^{\infty}$ must equal the moments of a positive measure on the real line, for sufficiently many positive $\phi$ in $X^{*}$, x in X. If the measures are supported on [0, $\infty$), then T generates a completely monotone semigroup. On a reflexive Banach lattice, these conditions are also necessary, and are equivalent to T being scalar, with positive projection-valued measure. T generates a completely monotone semigroup if and only if T is positive and m-dispersive and generates a bounded holomorphic semigroup.

  • PDF

CHARACTERIZATION OF RELATIVELY DEMICOMPACT OPERATORS BY MEANS OF MEASURES OF NONCOMPACTNESS

  • Jeribi, Aref;Krichen, Bilel;Salhi, Makrem
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.877-895
    • /
    • 2018
  • In this paper, we show that an unbounded $S_0$-demicompact linear operator T with respect to a bounded linear operator $S_0$, acting on a Banach space, can be characterized by the Kuratowskii measure of noncompactness. Moreover, some other quantities related to this measure provide sufficient conditions to the operator T to be $S_0$-demicompact. The obtained results are used to discuss the connection with Fredholm and upper Semi-Fredholm operators.

CONTROLLABILITY OF SECOND ORDER SEMI-LINEAR NEUTRAL IMPULSIVE DIFFERENTIAL INCLUSIONS ON UNBOUNDED DOMAIN WITH INFINITE DELAY IN BANACH SPACES

  • Chalishajar, Dimplekumar N.;Acharya, Falguni S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.813-838
    • /
    • 2011
  • In this paper, we prove sufficient conditions for controllability of second order semi-linear neutral impulsive differential inclusions on unbounded domain with infinite delay in Banach spaces using the theory of strongly continuous Cosine families. We shall rely on a fixed point theorem due to Ma for multi-valued maps. The controllability results in infinite dimensional space has been proved without compactness on the family of Cosine operators.

THE TOEPLITZ OPERATOR INDUCED BY AN R-LATTICE

  • Kang, Si Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.491-499
    • /
    • 2012
  • The hyperbolic metric is invariant under the action of M$\ddot{o}$bius maps and unbounded. For 0 < $r$ < 1, there is an r-lattice in the Bergman metric. Using this r-lattice, we get the measure ${\mu}_r$ and the Toeplitz operator $T^{\alpha}_{\mu}_r$ and we prove that $T^{\alpha}_{\mu}_r$ is bounded and $T^{\alpha}_{\mu}_r$ is compact under some condition.

ON THE CONJUGATE DARBOUX-PROTTER PROBLEMS FOR THE TWO DIMENSIONAL WAVE EQUATIONS IN THE SPECIAL CASE

  • Choi, Jong-Bae;Park, Jong-Yeoul
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.681-692
    • /
    • 2002
  • In the article [2], the conjugate Darboux-Protter problem Dn is formulated for the two dimensional wave equation in the class of unbounded functions and the uniqueness of solutions has been established. In this paper, we shall show the existence of solutions for the hyperbolic equations with Bessel operators in another special case.

PERTURBATION RESULTS FOR HYPERBOLIC EVOLUTION SYSTEMS IN HILBERT SPACES

  • Kang, Yong Han;Jeong, Jin-Mun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.13-27
    • /
    • 2014
  • The purpose of this paper is to derive a perturbation theory of evolution systems of the hyperbolic second order hyperbolic equations. We give an example of a partial functional equation as an application of the preceding result in case of the mixed problems for hyperbolic equations of second order with unbounded principal operators.

Spectral Analysis of Four Term Differential Operator

  • Oluoch, Nyamwala Fredrick
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.1
    • /
    • pp.15-35
    • /
    • 2010
  • By strengthening dichotomy condition and weakening decay conditions, we show that a four term 2n-th order differential operator with unbounded coefficients is nonlimit-point. Using stringent conditions we show that the deficiency index of this operator is determined by the behaviour of the coefficients themselves. Similarly, we prove the absence of singular continuous spectrum and that the absolutely continuous spectrum has multiplicity two.

ON SOME PROPERTIES OF BARRIERS AT INFINITY FOR SECOND ORDER UNIFORMLY ELLIPTIC OPERATORS

  • Cho, Sungwon
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.59-71
    • /
    • 2018
  • We consider the boundary value problem with a Dirichlet condition for a second order linear uniformly elliptic operator in a non-divergence form. We study some properties of a barrier at infinity which was introduced by Meyers and Serrin to investigate a solution in an exterior domains. Also, we construct a modified barrier for more general domain than an exterior domain.

CONTROLLABILITY FOR SEMILINEAR STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH DELAYS IN HILBERT SPACES

  • Kim, Daewook;Jeong, Jin-Mun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.355-368
    • /
    • 2021
  • In this paper, we investigate necessary and sufficient conditions for the approximate controllability for semilinear stochastic functional differential equations with delays in Hilbert spaces without the strict range condition on the controller even though the equations contain unbounded principal operators, delay terms and local Lipschitz continuity of the nonlinear term.

REGULARITY FOR FRACTIONAL ORDER RETARDED NEUTRAL DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Cho, Seong Ho;Jeong, Jin-Mun;Kang, Yong Han
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1019-1036
    • /
    • 2016
  • In this paper, we study the existence of solutions and $L^2$-regularity for fractional order retarded neutral functional differential equations in Hilbert spaces. We no longer require the compactness of structural operators to prove the existence of continuous solutions of the non-linear differential system, but instead we investigate the relation between the regularity of solutions of fractional order retarded neutral functional differential systems with unbounded principal operators and that of its corresponding linear system excluded by the nonlinear term. Finally, we give a simple example to which our main result can be applied.