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REGULARITY FOR FRACTIONAL ORDER

RETARDED NEUTRAL DIFFERENTIAL EQUATIONS

IN HILBERT SPACES

Seong Ho Cho, Jin-Mun Jeong, and Yong Han Kang

Abstract. In this paper, we study the existence of solutions and L
2-

regularity for fractional order retarded neutral functional differential equa-
tions in Hilbert spaces. We no longer require the compactness of struc-
tural operators to prove the existence of continuous solutions of the non-
linear differential system, but instead we investigate the relation between
the regularity of solutions of fractional order retarded neutral functional
differential systems with unbounded principal operators and that of its
corresponding linear system excluded by the nonlinear term. Finally, we
give a simple example to which our main result can be applied.

1. Introduction

Let H and V be two complex Hilbert spaces such that V is a dense subspace
of H . In this paper, we study the existence of solutions and L2-regularity for
the following fractional order retarded neutral functional differential equation:

{

dα

dtα
[x(t) + g(t, xt)]=Ax(t) +

∫ 0

−h
a1(s)A1x(t + s)ds+ (Fx)(t) + k(t), t > 0,

x(0)=φ0, x(s) = φ1(s), −h ≤ s < 0,

(1.1)

where 1/2 < α < 1, h > 0, a1(·) is Hölder continuous, k is a forcing term, and
g, f , are given functions satisfying some assumptions. Moreover, A : D(A) ⊂
H → H is unbounded but A1 is bounded. For each s ∈ [0, T ], we define xs :
[−h, 0] → H as xs(r) = x(s+r) for r ∈ [−h, 0] and (φ0, φ1) ∈ H×L2(−h, 0;V ).

This kind of systems arises in many practical mathematical models arising
in dynamic systems, economy, physics, biological and engineering problems,
etc. (see [5, 6, 17, 18]). There has been a significant development in fractional
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differential equations in recent years, see [9, 14, 16, 20] and the references
therein.

In [4, 7, 8], the authors have discussed the existence of solutions for mild
solutions for the neutral differential systems with state-dependence delay. Most
studies about the neutral initial value problems governed by retarded semilinear
parabolic equation have been devoted to the control problems. As for the
retarded differential equations, Jeong et al. [12, 13], Sukavanam et al. [22], and
Wang [25], have discussed the regularity of solutions and controllability of the
semilinear retarded systems, and see [12, 13, 22, 25] and references therein for
the linear retarded systems.

Recently, the existence of mild solutions for fractional neutral evolution
equations has been studied in [10, 14], the existence of solutions of inhomo-
geneous fractional diffusion equations with a forcing function in Baeumer et
al. [2], and the existence and approximation of solutions to fractional evolution
equation in Muslim [19]. In addition, Sukavanam et al. [21] studied approxi-
mate controllability of fractional order semilinear delay systems.

In this paper, we propose a different approach of the earlier works used prop-
erties of the relative compactness. Our approach is that regularity results of
general retarded linear systems of Di Blasio et al. [3] and semilinear systems of
[13] remain valid under the above formulation of fractional order retarded neu-
tral differential system (1.1) even though the system (1.1) contains unbounded
principal operators, delay term, and local Lipschitz continuity of the nonlinear
term. The methods of the functional analysis concerning an analytic semigroup
of operators and some fixed point theorems are applied effectively.

The paper is organized as follows. In Section 2, we deal with properties
of the analytic semigroup constructing the strict solution of the corresponding
linear systems excluded by the nonlinear term and introduce basic properties.
In Section 3, by using properties of the strict solutions in dealt in Section 2, we
will obtain the L2-regularity of solutions of (1.1), and a variation of constant
formula of solutions of (1.1). Finally, we also give an example to illustrate the
applications of the abstract results.

2. Preliminaries and lemmas

The inner product and norm in H are denoted by (·, ·) and | · |, respectively.
V is another Hilbert space densely and continuously embedded in H . The
notations || · || and || · ||∗ denote the norms of V and V ∗ as usual, respectively.
For brevity we may regard that

(2.1) ||u||∗ ≤ |u| ≤ ||u||, u ∈ V.

Let a(·, ·) be a bounded sesquilinear form defined in V × V and satisfying
G̊arding’s inequality

(2.2) Re a(u, u) ≥ c0||u||2 − c1|u|2, c0 > 0, c1 ≥ 0.
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Let A be the operator associated with the sesquilinear form −a(·, ·):
((c1 − A)u, v) = −a(u, v), u, v ∈ V.

It follows from (2.2) that for every u ∈ V

Re (Au, u) ≥ c0||u||2.
Then A is a bounded linear operator from V to V ∗ according to the Lax-
Milgram theorem, and its realization in H which is the restriction of A to

D(A) = {u ∈ V ;Au ∈ H}
is also denoted by A. Then A generates an analytic semigroup S(t) = etA in
both H and V ∗ as in Theorem 3.6.1 of [23]. Moreover, there exists a constant
C0 such that

(2.3) ||u|| ≤ C0||u||1/2D(A)|u|
1/2

for every u ∈ D(A), where

||u||D(A) = (|Au|2 + |u|2)1/2

is the graph norm of D(A). Thus we have the following sequence

D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗,

where each space is dense in the next one and continuous injection.

Lemma 2.1. With the notations (2.1), (2.3), we have

(V, V ∗)1/2,2 = H,

(D(A), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗ (see
Section 1.3.3 of [24]).

If X is a Banach space and 1 < p < ∞, Lp(0, T ;X) is the collection of all
strongly measurable functions from (0, T ) into X the p-th powers of norms are
integrable. L(X,Y ) is the collection of all bounded linear operators from X
into Y , and L(X,X) is simply written as L(X).

For the sake of simplicity we assume that the semigroup S(t) generated by
A is uniformly bounded, that is, There exists a constant M0 such that

(2.4) ||S(t)||L(H) ≤ M0, ||AS(t)||L(H) ≤
M0

t
.

The following lemma is from [23, Lemma 3.6.2].

Lemma 2.2. There exists a constant M0 such that the following inequalities

hold:

||S(t)||L(V,H) ≤ t−1/2M0,(2.5)

||S(t)||L(V ∗,V ) ≤ t−1M0,(2.6)

||AS(t)||L(H,V ) ≤ t−3/2M0.(2.7)
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The following initial value problem for the abstract linear parabolic equation

(2.8)

{

dx(t)
dt

= Ax(t) +
∫ 0

−h
a1(s)A1x(t+ s)ds+ k(t), 0 < t ≤ T,

x(0) = φ0, x(s) = φ1(s) s ∈ [−h, 0).

Then the mild solution x(t) is represented by

x(t) = S(t)φ0 +

∫ t

0

S(t− s)
{

∫ 0

−h

a1(τ)A1x(s+ τ)dτ + f(s, x(s))}ds

+

∫ t

0

S(t− s)k(s)ds,

x(0) = φ0, x(s) = φ1(s) s ∈ [−h, 0).

By virtue of Theorem 2.1 of [11] or [3], we have the following result on the
corresponding linear equation of (2.8).

Lemma 2.3. (1) For (φ0, φ1) ∈ V × L2(−h, 0;D(A)) and k ∈ L2(0, T ;H),
T > 0, there exists a unique solution x of (2.8) belonging to

L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];F )

and satisfying

(2.9)
||x||L2(0,T ;D(A))∩W 1,2(0,T ;H) ≤ C1(||φ0||F + ||φ1||L2(−h,0;D(V )) + ||k||L2(0,T ;H)),

where C1 is a constant depending on T and

||x||L2(0,T ;D(A))∩W 1,2(0,T ;H) = max{||x||
L2(0,T ;D(A)),||x||1,2

W
(0,T ;H)}.

(2) Let (φ0, φ1) ∈ H×L2(−h, 0;V ) and k ∈ L2(0, T ;V ∗), T > 0. Then there

exists a unique solution x of (2.8) belonging to

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

(2.10) ||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C1(|φ0|+ ||φ1||L2(−h,0;V ) + ||k||L2(0,T ;V ∗)),

where C1 is a constant depending on T .

Let the solution spaces W0(T ) and W1(T ) of strong solutions be defined by

W0(T ) = L2(0, T ;D(A)) ∩W 1,2(0, T ;H),

W1(T ) = L2(0, T ;V ) ∩W 1,2(0, T ;V ∗).

Here, we note that by using interpolation theory, we have

W0(T ) ⊂ C([0, T ];V ), W1(T ) ⊂ C([0, T ];H).

Thus, there exists a constant c1 > 0 such that

(2.11) ||x||C([0,T ];V ) ≤ c1||x||W0(T ), ||x||C([0,T ];H) ≤ c1||x||W1(T ).

In what follows in this section, we assume c1 = 0 in (2.2) without any loss of
generality. So we have that 0 ∈ ρ(A) and the closed half plane {λ : Reλ ≥ 0}
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is contained in the resolvent set of A. In this case, it is possible to define the
fractional power Aα for α > 0. The subspace D(Aα) is dense in H and the
expression

||x||α = ||Aαx||, x ∈ D(Aα)

defines a norm on D(Aα). It is also well known that Aα is a closed operator
with its domain dense and D(Aα) ⊃ D(Aβ) for 0 < α < β. Due to the well
known fact that A−α is a bounded operator, we can assume that there is a
constant C−α > 0 such that

(2.12) ||A−α||L(H) ≤ C−α, ||A−α||L(V ∗,V ) ≤ C−α.

3. Existence of solutions

Consider the following fractional order retarded neutral differential system:

{

dα

dtα
[x(t) + g(t, xt)]=Ax(t) +

∫ 0

−h
a1(s)A1x(t + s)ds+ (Fx)(t) + k(t), t > 0,

x(0)=φ0, x(s) = φ1(s), −h ≤ s < 0,

(3.1)

where 0 < α < 1 and A and A1 are the linear operators defined as in Section
2. For each s ∈ [0, T ], we define xs : [−h, 0] → H as

xs(r) = x(s+ r), −h ≤ r ≤ 0.

We will set
Π = L2(−h, 0;V ).

Definition. The fractional integral of order α > 0 with the lower limit 0 from
a function f is defined as

Iαf(t) =
1

Γ (α)

∫ t

0

f(s)

(t− s)1−α
ds, t > 0,

provided the right hand side is pointwise defined on [0,∞), Γ is the Gamma
function.

The fractional derivative of order α > 0 in the Caputo sense with the lower
limit 0 from a function f ∈ Cn[0,∞) is defined as

dαf(t)

dtα
=

1

Γ (n− α)

∫ t

0

f (n)(s)

(t− s)1+α−n
ds = In−αf (n)(t), t > 0, n−1 < α < n.

For the basic results about fractional integrals and fractional derivative, one
can refer to [20].

The mild solution of the system (3.1) is represented as (see [10, 26]):

x(t) = S(t)[φ0 + g(0, φ1)]− g(t, xt) +
1

Γ (α)

∫ t

0

(t− s)(α−1)AS(t− s)g(s, xs)ds

(3.2)

+
1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s)
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×
{

∫ 0

−h

a1(τ)A1x(s+ τ)dτ + (Fx)(s) + k(s)}ds.

To establish our results, we introduce the following assumptions on system
(3.1).

Assumption (A). We assume that a1(·) is Hölder continuous of order ρ:
|a1(0)| ≤ H1, |a1(s)− a1(τ)| ≤ H1(s− τ)ρ.

Assumption (F). F is a nonlinear mapping of L2(0, T ;V ) into L2(0, T ;H)
satisfying following:

(i) There exists a function Lf : R+ → R such that

||Fx− Fy||L2(0,T ;H) ≤ Lf (r)||x − y||L2(0,T ;V ), t ∈ [0, T ]

hold for ||x||L2(0,T ;V ) ≤ r and ||y||L2(0,T ;V ) ≤ r.
(ii) The inequality

||Fx||L2(0,T ;H) ≤ Lf (r)(||x||L2(0,T ;V ) + 1)

holds for every t ∈ [0, T ] and ||x||L2(0,T ;V ) ≤ r.

Assumption (G). Let g : [0, T ] × Π → H be a nonlinear mapping such
that there exists a constant Lg satisfying the following conditions hold:

(i) For any x ∈ Π, the mapping g(·, x) is strongly measurable;
(ii) There exists a positive constant β > 1− 2α/3 such that

|Aβg(t, 0)| ≤ Lg, |Aβg(t, x)−Aβg(t, x̂)| ≤ Lg||x− x̂||Π
for all t ∈ [0, T ], and x, x̂ ∈ Π.

Lemma 3.1. Let x ∈ L2(−h, T ;V ). Then the mapping s 7→ xs belongs to

C([0, T ]; Π), and

||xt||Π ≤ ||x||L2(−h,t;V )(t > 0),(3.3)

||x·||L2(0,T ;Π) ≤
√
T ||x||L2(−h,T ;V ).(3.4)

Proof. The first paragraph is easy to verify. Moreover, we have

||xt||Π=
[

∫ 0

−h

||x(s+ τ)||2dτ
]1/2 ≤

[

∫ t

−h

||x(τ)||2dτ
]1/2 ≤ ||x||L2(−h,t;V ), t > 0,

and

||x·||2L2(0,T ;Π) ≤
∫ T

0

||xs||2Πds ≤
∫ T

0

∫ 0

−h

||x(s+ r)||2drds

≤
∫ T

0

ds

∫ T

−h

||x(r)||2dr ≤ T ||x||2L2(−h,T ;V ).
�

One of the main useful tools in the proof of existence theorems for nonlinear
functional equations is the following fixed point theorem.



REGULARITY FOR FRACTIONAL ORDER RETARDED NEUTRAL EQUATIONS 1025

Lemma 3.2 (Krasnoselski [15]). Suppose that Σ is a closed convex subset of a

Banach space X. Assume that K1 and K2 are mappings from Σ into X such

that the following conditions are satisfied:

(i) (K1 +K2)(Σ) ⊂ Σ,
(ii) K1 is a completely continuous mapping,

(iii) K2 is a contraction mapping.

Then the operator K1 +K2 has a fixed point in Σ.

From now on, we establish the following results on the solvability of the
equation (3.1).

Theorem 3.3. Let Assumptions (A), (F) and (G) be satisfied. Assume that

(φ0, φ1) ∈ H ×Π and k ∈ L2(0, T ;V ∗) for T > 0. Then, there exists a solution

x of the system (3.1) such that

x ∈ W1(T ) = L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) →֒ C([0, T ];H).

Moreover, there is a constant C2 independent of the initial data (φ0, φ1) and

the forcing term k such that

(3.5) ||x||L2(−h,T ;V ) ≤ C2(1 + |φ0|+ ||φ1||Π + ||k||L2(0,T ;V ∗)).

Proof. Let
r := 2

[

C1|φ0|+ C1C−αLg(||φ1||+ 1)],

and

N := C−αLg

(

||φ1||Π + ||x||L2(0,T1;V ) + 1
)

+
C1(2α)

−1/2(2α− 1)−1/2

Γ (α)

×
(

|φ0|+ ||φ1||L2(−h,0;V ) + Lf(r)(||x||L2(0,T1;V ) + 1) + ||k||L2(0,T1;V )

)

+
C1−βLg

(

α− 3(1− β)/2
)(

2α+ 3β − 2
)1/2

Γ (α)
(||φ1||Π + ||x||L2(0,T1;V ) + 1),

where C1 is the constants in Lemma 2.3 and β > 1− 2α/3 in Assumption (G).
Let

T γ
1 := max{T 1/2

1 , T
(2α+3β−2)/2
1 }

and choose 0 < T1 < T such that

(3.6) T γ
1 N ≤ r

2
=

[

C1|φ0|+ C1C−αLg(||φ1||+ 1)],

and

N̂ := T γ
1

{

C−αLg +
C1−βLg

(

α− 3(1− β)/2
)(

2α+ 3β − 2
)1/2

Γ (α)
(3.7)

+
C1(2α)

−1/2(2α− 1)−1/2Lf(r)

Γ (α)

}

< 1.



1026 SEONG HO CHO, JIN-MUN JEONG, AND YONG HAN KANG

Let J be the operator on L2(0, T1;V ) defined by

(Jx)(t)

= S(t)[φ0 + g(0, φ1)]− g(t, xt) +
1

Γ (α)

∫ t

0

(t− s)(α−1)AS(t− s)g(s, xs)ds

+
1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s)
{

∫ 0

−h

a1(τ)A1x(s+τ)dτ+(Fx)(s)+k(s)}ds.

Let

Σ = {x ∈ L2(−h, T ;V ) : x(0) = φ0, and x(s) = φ1(s)(s ∈ [−h, 0))}
and

Σr = {x ∈ Σ : ||x||L2(0,T1;V ) ≤ r},
which is a bounded closed subset of L2(0, T1;V ).

Now, in order to show that the operator J has a fixed point in Σr ⊂
L2(0, T1;V ), we take the following steps according to the process of Lemma
3.2.

Step 1. J maps Σr into Σr.
By (2.10), (2.14) and Assumption (G), and noting x0 = φ1, we know

||S(·)g(0, x0)||L2(0,T1;V )(3.8)

= C1|g(0, φ1)|
= C1||A−β ||L(H)

(

|Aβg(0, φ1)−Aβg(0, 0)|+ |Aβg(0, 0)|
)

≤ C1C−αLg(||φ1||+ 1).

From (2.10) of Lemma 2.3 it follows

(3.9) ||S(t)φ0||L2(0,T1;V ) ≤ C1|φ0|,
and by using Hölder inequality

∫ t

0

(t− s)α−1
∥

∥S(t− s)
{

∫ 0

−h

a1(τ)A1x(s+ τ)dτ + (Fx)(s) + k(s)
}∥

∥ds

(3.10)

≤ (2α− 1)−1/2t(2α−1)/2C1(|φ0|+ ||φ1||L2(−h,0;V ) + ||Fx||L2(0,t;V ∗)

+ ||k||L2(0,t;V ∗)).

Define the operator I1 from L2(0, T1;V ) to itself by

(I1x)(t)=
1

Γ (α)

∫ t

0

(t−s)α−1S(t−s)
{

∫ 0

−h

a1(τ)A1x(s+τ)dτ+(Fx)(s)+k(s)
}

ds.

Then according to (3.10) we obtain the following inequality

||I1||L2(0,T1;V ) ≤
C1(2α)

−1/2(2α− 1)−1/2Tα
1

Γ (α)

(

|φ0|+ ||φ1||L2(−h,0;V )(3.11)

+ Lf (r)(||x||L2(0,T1;V ) + 1) + ||k||L2(0,T1;V )

)

.
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By using Assumption (G) and Lemma 3.1, we have

||g(·, x·)||L2(0,T1;V ) =
(

∫ T1

0

∥

∥A−βAβg(t, xt)
∥

∥

2
dt
)1/2

(3.12)

≤ Cα

(

∫ T1

0

∥

∥Aβg(t, xt)
∥

∥

2
dt
)1/2

≤ C−αLg

√

T1

(

||xt||Π + 1
)

≤ C−αLg

√

T1

(

||φ1||Π + ||x||L2(0,T1;V ) + 1
)

.

Here, we note

(3.13) ||xt||Π ≤ ||x||L2(−h,T1;V ) ≤ ||φ1||Π + ||x||L2(0,T1;V ).

Again we define the operator I2 from L2(0, T1;V ) to itself by

(I2x)(t) =
1

Γ (α)

∫ t

0

(t− s)(α−1)AS(t− s)g(s, xs)ds.

From Lemma 2.6 and Assumption (G) we have

|(t− s)(α−1)AS(t− s)g(s, xs)|
= (t− s)(α−1)||A1−βS(t− s)||L(H,V )|Aβ(g(s, xs)|

≤ C1−β

(t− s)1−α+3(1−β)/2
|Aβ(g(s, xs)|

≤ C1−β

(t− s)1−α+3(1−β)/2
Lg(||φ1||Π + ||x||L2(0,T1;V ) + 1),

and hence, by using Hölder inequality and Assumption (G),

||I2x||L2(0,T1;V )(3.14)

=
[

∫ T1

0

∥

∥

1

Γ (α)

∫ t

0

(t− s)(α−1)AS(t− s)g(s, xs)ds
∥

∥

2
dt
]1/2

≤ 1

Γ (α)
C1−βLg(||φ1||Π + ||x||L2(0,T1;V ) + 1)

[

∫ T1

0

(

∫ t

0

1

(t− s)1−α+3(1−β)/2
ds
)2
dt
]1/2

≤ C1−βLgT
(2α+3β−2)/2
1

(

α− 3(1− β)/2
)(

2α+ 3β − 2
)1/2

Γ (α)
(||φ1||Π + ||x||L2(0,T1;V ) + 1).

Thus, from (3.8)-(3.14) it follows that

||Jx||L2(0,T1;V )

≤ C1|φ0|+ C1C−αLg(||φ1||+ 1) + C−αLg

√

T1

(

||φ1||Π + ||x||L2(0,T1;V ) + 1
)

+
C1(2α)

−1/2(2α− 1)−1/2Tα
1

Γ (α)
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×
(

|φ0|+ ||φ1||L2(−h,0;V ) + Lf (r)(||x||L2(0,T1;V ) + 1) + ||k||L2(0,T1;V )

)

+
C1−βLgT

(2α+3β−2)/2
1

(

α− 3(1− β)/2
)(

2α+ 3β − 2
)1/2

Γ (α)
(||φ1||Π + ||x||L2(0,T1;V ) + 1),

≤ C1|φ0|+ C1C−αLg(||φ1||+ 1) + T γ
1 N ≤ r

2
+

r

2
≤ r.

Therefore, J maps Σr into Σr.
Define mapping K1 +K2 on L2(0, T1;V ) by the formula

(Jx)(t) = (K1x)(t) + (K2x)(t),

where

(K1x)(t) =
1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s)

∫ s

0

a1(τ − s)A1x(τ)dτds,

and

(K2x)(t) = S(t)[φ0 + g(0, x0)]− g(t, xt)

+
1

Γ (α)

∫ t

0

(t− s)(α−1)AS(t− s)g(s, xs)ds

+
1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s)

×
{

∫ 0

s−h

a1(τ − s)A1φ
1(τ)dτ + F (x)(s) + k(s)}ds.

Step 2. K1 is a completely continuous mapping.
We can now employ Lemma 3.2 with Σr. Assume that a sequence {xn}

of L2(0, T1;V ) converges weakly to an element x∞ ∈ L2(0, T1;V ), i.e., w −
limn→∞ xn = x∞. Then we will show that

(3.15) lim
n→∞

||K1xn −K1x∞||L2(0,T1;V ) = 0,

which is equivalent to the completely continuity of K1 since L2(0, T1;V ) is
reflexive. For a fixed t ∈ [0, T1], let x

∗
t (x) = (K1x)(t) for every x ∈ L2(0, T1;V ).

Then x∗
t ∈ L2(0, T1;V

∗) and we have limn→∞ x∗
t (xn) = x∗

t (x∞) since w −
limn→∞ xn = x∞. Hence,

lim
n→∞

(K1xn)(t) = (K1x∞)(t), t ∈ [0, T1].

By using Hölder inequality, we obtain easily the following inequality:

|
∫ s

0

a1(τ − s)A1x(τ)dτ |(3.16)

=
∣

∣

∫ s

0

(a1(τ − s)− a1(0) + a1(0))A1x(τ)dτ
∣

∣

≤
{(

(2ρ+ 1)−1s2ρ+1
)1/2

+
√
s
}

H1||A1||L(H)

(

∫ s

0

||x(τ)||2dτ
)1/2

.
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Thus, by (2.5) and (3.16) it holds

||(K1x)(t)||

=
∥

∥

1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s)

∫ s

0

a1(τ − s)A1x(τ)dτds
∥

∥

≤ H1||A1||L(H)||x||L2(0,t;V )

Γ (α)

∥

∥

∫ t

0

1

(t− s)1/2−α

{

((2ρ+ 1)−1s(2ρ+1)/2 +
√
s
}

ds
∥

∥

≤ H1||A1||L(H)||x||L2(0,t;V )

Γ (α)

{

(2ρ+ 1)−1B(1/2 + α, (2ρ+ 3)/2)tρ+1

+B(1/2 + α, 3/2)t
}

.

:= c2||x||L2(0,t;V ),

where c2 is a constant and B(·, ·) is the Beta function, that is,

B(1/2 + α, (2ρ+ 3)/2)tρ+1 =

∫ t

0

(t− s)α−1/2s(2ρ+1)/2ds.

And we know

sup
0≤t≤T1

||(K1x)(t)|| ≤ c2||x||M2(0,T1;V ) ≤ ∞.

Therefore, by Lebesgue’s dominated convergence theorem it holds

lim
n→∞

(

∫ T1

0

||(K1xn)(t)||2dt
)

=
(

∫ T1

0

||(K1x∞)(t)||2dt
)

,

i.e., limn→∞ ||K1xn||L2(0,T1;V ) = ||K1x∞||L2(0,T1;V ). Since L2(0, T1;V ) is a
reflexive space, it holds (3.15).

Step 3. K2 is a contraction mapping.
For every x1 and x2 ∈ Σr, we have

(K2x1)(t)− (K2x2)(t) = g(t, x2t)− g(t, x1t)

−
∫ t

0

AS(t− s)
(

g(t, x1s)− g(t, x2s)
)

ds

+

∫ t

0

S(t− s){F (x1)(s)− F (x2)(s)}dW.

By the similar way to (3.8)-(3.14), we have

||K2x1 −K2x2||L2(0,T1;V )

≤
{

C−αLg

√

T1 +
C1−βLgT

(2α+3β−2)/2
1

(

α− 3(1− β)/2
)(

2α+ 3β − 2
)1/2

Γ (α)

+
C1(2α)

−1/2(2α− 1)−1/2Lf(r)T
α
1

Γ (α)

≤ N̂ ||x1 − x2||M2(0,T1;V ).
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So by virtue of the condition (3.7) the contraction mapping principle gives that
the solution of (3.1) exists uniquely in L2(0, T1;V ). This has proved the local
existence and uniqueness of the solution of (3.1).

Step 4. We drive a priori estimate of the solution.
To prove the global existence, we establish a variation of constant formula

(3.5) of solution of (3.1). Let x be a solution of (3.1) and φ0 ∈ H . Then we
have that from (3.8)-(3.14) it follows that

||x||L2(0,T1;V )

≤ C1|φ0|+ C1C−αLg(||φ1||+ 1) + C−αLg

√

T1

(

||φ1||Π + ||x||L2(0,T1;V ) + 1
)

+
C1(2α)

−1/2(2α− 1)−1/2Tα
1

Γ (α)

×
(

|φ0|+ ||φ1||L2(−h,0;V ) + Lf (r)(||x||L2(0,T1;V ) + 1) + ||k||L2(0,T1;V )

)

+
C1−βLgT

(2α+3β−2)/2
1

(

α− 3(1− β)/2
)(

2α+ 3β − 2
)1/2

Γ (α)
(||φ1||Π + ||x||L2(0,T1;V ) + 1),

= N̂ ||x||L2(0,T1;V ) + N̂1,

where N̂ is the constant of (3.7) and

N̂1 = C1|φ0|+ C1C−αLg(||φ1||+ 1) + C−αLg

√

T1

(

||φ1||Π + 1
)

+
C1(2α)

−1/2(2α− 1)−1/2Tα
1

Γ (α)

(

|φ0|+||φ1||L2(−h,0;V )+1)+||k||L2(0,T1;V )

)

+
C1−βLgT

(2α+3β−2)/2
1

(

α− 3(1− β)/2
)(

2α+ 3β − 2
)1/2

Γ (α)
(||φ1||Π + 1).

Taking into account (3.7) there exists a constant C2 such that

||x||L2(0,T1;V ) ≤ (1− N̂)−1N̂1(3.17)

≤ C2(1 + E(|φ0|2) + ||φ1||Π + ||k||M2(0,T1;V ∗)),

which obtain the inequality (3.5).
Now we will prove that |x(T1)| < ∞ in order that the solution can be

extended to the interval [T1, 2T1]. From (2.11) and Lemma 2.3 it follows that

|S(T1)[φ
0 + g(0, x0)]| ≤ c1||S(·)[φ0 + g(0, x0)||W1(T1)(3.18)

≤ c1C1|φ0 + g(0, φ1)|
≤ c1C1

{

|φ0|+ C−αLg(||φ1||Π + 1)
}

:= I,

and by using Assumption (G) we have

|g(T1, xT1)| ≤
∥

∥A−βAβg(t, xT1)
∥

∥,(3.19)

≤ C−αLg

(

||xT1 ||Π + 1
)
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≤ C−αLg

(

||φ1||Π + ||x||L2(0,T1;V ) + 1
)

:= II.

By (3.10), we have

|(I1x)(T1)|

(3.20)

≤ 1

Γ (α)

∥

∥

∫ T1

0

(T1 − s)α−1S(T1 − s)

×
{

∫ 0

−h

a1(τ)A1x(s+ τ)dτ + (Fx)(s) + k(s)
}

ds
∥

∥

≤ (2α− 1)−1/2Γ (α)−1T1
(2α−1)/2

× C1(|φ0|+ ||φ1||L2(−h,0;V ) + Lf(r)(||x||L2(0,T1;V ) + 1) + ||k||L2(0,T1;V ∗))

:= III.

From Lemma 2.4 and Assumption (G) we have

|(T1 − s)(α−1)AS(T1 − s)g(s, xs)|
≤ (T1 − s)(α−1)|A1−βS(T1 − s)|L(H)|Aβ(g(s, xs)|

≤ C1−β

(T1 − s)1−α+(1−β)
|Aβ(g(s, xs)|

≤ C1−β

(T1 − s)2−α−β
Lg(||φ1||Π + ||x||L2(0,T1;V ) + 1),

and so

|(I2x)(T1)| =
∣

∣

1

Γ (α)

∫ T1

0

(T1 − s)(α−1)AS(T1 − s)g(s, xs)ds
∣

∣

(3.21)

≤ C1−β

(

α+ β − 1
)−1

Tα+β−1
1 Lg(||φ1||Π + ||x||L2(0,T1;V ) + 1)

:= IV.

Thus, by (3.17)-(3.21) we have

|x(T1)| =
∣

∣S(T1)[φ
0 + g(0, x0)]− g(T1, xT1) + (I1x)(T1) + (I2x)(T1)

∣

∣

≤ I + II + III + IV < ∞.

Hence we can solve the equation in [T1, 2T1] with the initial (x(T1), xT1) and an
analogous estimate to (3.4). Since the condition (3.6) is independent of initial
values, the solution can be extended to the interval [0, nT1] for any natural
number n, and so the proof is complete. �

Remark 3.4. Thanks for Lemma 2.3, we note that the solution of (3.1) un-
der conditions of Theorem 3.1 with (φ0, φ1) ∈ V × L2(0, T ;D(A)) and k ∈
L2(0, T ;H) for T > 0 belongs to

W0(T ) = L2(0, T ;D(A))) ∩W 1,2(0, T ;H) →֒ C([0, T ];V ).
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Moreover, there is a constant C2 independent of the initial data (φ0, φ1) and
the forcing term k such that

||x||L2(−h,T ;D(A)) ≤ C2(1 + ||φ0||+ ||φ1||L2(0,T ;D(A)) + ||k||L2(0,T ;H)).

Now, we obtain that the solution mapping is Lipschitz continuous in the fol-
lowing result, which is useful for the control problem and physical applications
of the given equation.

Theorem 3.5. Let Assumptions (A), (F) and (G) be satisfied. Assuming that

the initial data (φ0, φ1) ∈ H ×Π and the forcing term k ∈ M2(0, T ;V ∗). Then

the solution x of the equation (3.1) belongs to x ∈ L2(0, T ;V ) and the mapping

(3.22) H ×Π× L2(0, T ;V ∗) ∋ (φ0, φ1, k) 7→ x ∈ L2(0, T ;V )

is Lipschitz continuous.

Proof. From Theorem 3.1, it follows that if (φ0, φ1, k) ∈ L2(Ω, H) × Π ×
M2(0, T ;V ∗), then x belongs to M2(0, T ;V ). Let (φ0

i , φ
1
i , ki) and xi be the

solution of (3.1) with (φ0
i , φ

1
i , ki) in place of (φ0, φ1, k) for i = 1, 2. Let

xi(i = 1, 2) ∈ Σr. Then it holds

x1(t)− x2(t)

= S(t)[(φ0
1 − φ0

2) + (g(0, x1
0)− g(0, x2

0))]

− (g(t, x1
t )− g(t, x2

t ))+
1

Γ (α)

∫ t

0

(t− s)(α−1)AS(t− s)(g(s, x1
s)− g(t, x2

s))ds

+
1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s)
{

∫ 0

−h

a1(τ)A1(x
1(s+ τ) − x2(s+ τ))dτds

+
1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s){((Fx1)(s)− (Fx2)(s)) + (k1(s)− k2(s))}ds.

+
1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s)(k1(s)− k2(s))ds.

Hence, by applying the same argument as in the proof of Theorem 3.1, we have

||x1 − x2||L2(0,T1;V ) ≤ N̂ ||x1 − x2||L2(0,T1;V ) + N̂2,

where

N̂2 = C1|φ0
1 − φ0

2|+ C1C−αLg(||φ1
1 − φ1

2||Π) + C−αLg

√

T1||φ1
1 − φ1

2||Π

+
C1(2α)

−1/2(2α− 1)−1/2Tα
1

Γ (α)

×
(

|φ0
1 − φ0

2|+ ||φ1
1 − φ1

2||L2(−h,0;V ) + ||k1 − k2||L2(0,T1;V ∗)

)

+
C1−βLgT

(2α+3β−2)/2
1

(

α− 3(1− β)/2
)(

2α+ 3β − 2
)1/2

Γ (α)
||φ1

1 − φ1
2||Π
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which implies

||x||M2(0,T1;V ) ≤N̂2(1 − N̂)−1.

Therefore, it implies the inequality (3.22). �

Corollary 3.6. For a forcing term k ∈ L2(0, T ;V ∗) let xk be the solution of

equation (3.1). Let us assume that the embedding V ⊂ H is compact. Then the

mapping k 7→ xk is compact from L2(0, T ;V ∗) to L2(0, T ;H).

Proof. If k ∈ L2(0, T ;V ∗), then in view of Theorem 3.1

||xk||W1(T ) ≤ C3(1 + |g0|+ ||g1||L2(−h,0;V ) + ||k||L2(0,T ;V ∗)).

Hence if k is bounded in L2(0, T ;V ∗), then so is xk in L2(0, T ;V ))∩W 1,2(0, T ;
V ∗). Since V is compactly embedded in H by assumption, the embedding

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) →֒ L2(0, T ;H)

is compact in view of Theorem 2 of J. P. Aubin [1]. �

4. Example

Let

H = L2(0, π), V = H1
0 (0, π), V ∗ = H−1(0, π).

Consider the following retarded neutral stochastic differential system in Hilbert
space H :











dα

dtα
[x(t, y) + g(t, xt(t, y))] = Ax(t, y) +

∫ 0

−h
a1(s)A1x(t+ s, y)ds

+ f
′

(|x(t, y)|2)x(t, y) + k(t, y), (t, y) ∈ [0, T ]× [0, π],

x(0, y) = φ0(y), x(s, y) = φ1(s, y), (s, y) ∈ [−h, 0)× [0, π],

(4.1)

where h > 0, a1(·) is Hölder continuous, and A1 ∈ L(H). Let

a(u, v) =

∫ π

0

du(y)

dy

dv(y)

dy
dy.

Then

A = ∂2/∂y2 with D(A) = {x ∈ H2(0, π) : x(0) = x(π) = 0}.

The eigenvalue and the eigenfunction of A are λn = −n2 and zn(y) = (2/π)1/2

sinny, respectively. Moreover,

(a1) {zn : n ∈ N} is an orthogonal basis of H and

S(t)x =

∞
∑

n=1

en
2t(x, zn)zn, ∀x ∈ H, t > 0.

Moreover, there exists a constant M0 such that ||S(t)||L(H) ≤ M0.
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(a2) Let 0 < α < 1. Then the fractional power Aα : D(Aα) ⊂ H → H of
A is given by

Aαx =

∞
∑

n=1

n2α(x, zn)zn, D(Aα) := {x : Aαx ∈ H}.

In particular,

A−1/2x =

∞
∑

n=1

1

n
(x, zn)zn, and ||A−1/2|| = 1.

The nonlinear mapping f is a real valued function belong to C2([0,∞)) which
satisfies the conditions

(f1) f(0) = 0, f(r) ≥ 0 for r > 0,

(f2) |f ′

(r) ≤ c(r + 1) and |qf ′′(r)| ≤ c for r ≥ 0 and c > 0.

If we present

F (t, x(t, y)) = f
′

(|x(t, y)|2)x(t, y),
then it is well known that F is a locally Lipschitz continuous mapping from
the whole V into H by Sobolev’s imbedding theorem (see [23, Theorem 6.1.6]).
As an example of q in the above, we can choose q(r) = µ2r + η2r2/2 (µ and η
is constants).

Define g : [0, T ]×Π → H as

g(t, xt) =

∞
∑

n=1

∫ T

0

en
2t(

∫ 0

−h

a2(s)x(t + s, y)ds)dt, t > 0.

Then it can be checked that Assumption (G) is satisfied. Indeed, for x ∈ Π,
we know

Ag(t, xt) = (S(t)− I)

∫ 0

−h

a2(s)x(t + s)ds,

where I is the identity operator form H to itself and, we assume that

|a2(0)| ≤ ρ, |a2(s)− a2(τ)| ≤ ρ(s− τ)κ, s, τ ∈ [−h, 0]

for a constant κ > 0. Hence we have

|Ag(t, xt)| ≤ (M0 + 1)
{∣

∣

∫ 0

−h

(a2(s)−a2(0))x(t+s)dτ
∣

∣+
∣

∣

∫ 0

−h

a2(0)x(t+s)dτ
∣

∣

}

≤ (M0 + 1)ρ
{

(2κ+ 1)−1h2κ+1 + h
}

||xt||Π.

It is immediately seen that Assumption (G) has been satisfied. Thus, all the
conditions stated in Theorem 3.1 have been satisfied for the equation (4.1),
and so there exists a solution of (4.1) belongs to W1(T ) = L2(0, T ;V )) ∩
W 1,2(0, T ;V ∗) →֒ C([0, T ];H).
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