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CHARACTERIZATION OF RELATIVELY DEMICOMPACT

OPERATORS BY MEANS OF MEASURES OF

NONCOMPACTNESS

Aref Jeribi, Bilel Krichen, and Makrem Salhi

Abstract. In this paper, we show that an unbounded S0-demicompact
linear operator T with respect to a bounded linear operator S0, acting

on a Banach space, can be characterized by the Kuratowskii measure of

noncompactness. Moreover, some other quantities related to this measure
provide sufficient conditions to the operator T to be S0-demicompact.

The obtained results are used to discuss the connection with Fredholm
and upper Semi-Fredholm operators.

1. Introduction

In 1966, W. V. Petryshyn [16] has developed the concept of demicompact-
ness for nonlinear operator. Several applications of this concept were pro-
vided, especially on fixed point theory. In other direction, the demicompact-
ness concept was used to provide several results on Fredholm and Spectral
theories (see [2, 7, 12, 17]). Obviously, the class of demicompact operators act-
ing on a Banach space contains the class of compact operators. Hence, it
plays an important role when studying perturbations of Fredholm operators.
Recently, W. Chaker, A. Jeribi and B. Krichen [7] have utilized demicom-
pact operators in order to investigate the essential spectra of closed linear
operators. In 2014, B. Krichen [13], introduced the relative demicompactness
class with respect to a given closed linear operator as a generalization of the
demicompactness notion. This definition asserts that if X is a Banach space,
T : D(T ) ⊂ X −→ X, and S0 : D(S0) ⊂ X −→ X are two linear operators
with D(T ) ⊂ D(S0), then T is said to be S0-demicompact (or relative demi-
compact with respect to S0), if every bounded sequence (xn) in D(T ) such
that (S0xn − Txn) converges in X, have a convergent subsequence. In 2016,
B. Krichen and D. O’Regan [14] discussed some topological properties of the
set F(S0, T, z) := {x ∈ X : S0x ∈ Tx+ z}, where T is a nonlinear multi-valued
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mapping and S0 is a single-valued mapping acting on a Banach space X. Their
study was based on a new concept, the so called weakly relative demicompact-
ness for nonlinear operators. Recently, the same authors developed in [14] some
Fredholm and perturbation results involving the class of weakly demicompact
linear operators. Moreover, they studied the relationship between this class
and measures of weak noncompactness of linear operator with respect to an
axiomatic one. The central aim of this work is to show that an unbounded
S0-demicompact linear operator T with respect to a bounded linear operator
S0 can be characterized by the Kuratowskii’s measure of noncompactness. The
obtained results will be used to discuss the relation with Fredholm and upper
Semi-Fredholm operators.

Now let us recall some standard tools from Fredholm theory needed in this
work. Let X and Y be two Banach spaces. By an operator T from X into
Y , we mean a linear operator with domain D(T ) ⊆ X and range R(T ) ⊆ Y .
By C(X,Y ) we mean the set of all closed densely defined operators from X
into Y , by L(X,Y ) the Banach space of all bounded linear operator from X
into Y , and K(X,Y ) the subspace of all compact operators of L(X,Y ). If
T ∈ C(X,Y ), then we denote by α(T ) the dimension of the Kernel N (T ) and
β(T ) the codimension of R(T ) in Y . The classes of upper semi-Fredholm,
bounded upper semi-Fredholm and lower semi-Fredholm from X into Y are
defined respectively by

Φ+(X,Y ) = {T ∈ C(X,Y ) such that α(T ) <∞ and R(T ) is closed in Y},

Φb
+(X,Y ) = {T ∈ L(X,Y ) such that α(T ) <∞ and R(T ) is closed in Y}

and

Φ−(X,Y ) := {T ∈ C(X,Y ) such that β(T ) <∞ and R(T ) is closed in Y }.
Φ(X,Y ) := Φ+(X,Y )∩Φ+(X,Y ) is the set of Fredholm operators from X into
Y . The index of an operator T ∈ Φ+(X) ∪ Φ−(X) is ind(T ) = α(T ) − β(T ).
If X = Y , the sets L(X,Y ),Φ(X,Y ),Φ+(X,Y ),Φ−(X,Y ), and Φb

+(X,Y ) are

replaced by L(X), Φ(X), Φ+(X), Φ−(X), and Φb
+(X) respectively. If x ∈ X

and r > 0, then B(x, r) will denote the closed ball of X with center at x and
radius r. We denote by BX the closed unit ball of X and MX the set of all
bounded subset in X. Finally, we write D, conv(D) to denote respectively the
closure and the convex hull of a subset D of X.

Definition 1.1. Let X be a Banach space and T ∈ L(X). T is said to have
a right Fredholm inverse if there exists Tr ∈ L(X) such that I − TTr ∈ K(X).
We denote by

Φr(X) := {T ∈ L(X) such that T has a right Fredholm inverse}.
Gr(T ) will denote the set of right Fredholm inverses of T .

Definition 1.2 ([15, 18]). Let X be a Banach space. For any D ∈ MX ,
the Kuratowskii’s measure of noncompactness of D, denoted by µ(D), is the
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infimum of the set of real ε > 0 such that D can be covered by a finite number
of sets of diameter less than or equal to ε.

The following proposition gives some properties of the Kuratowskii’s measure
of noncompactness which are frequently used.

Proposition 1.1 ([4,15]). Let X be a Banach space, D and D′ be two bounded
subsets of X. Then, we have the following properties.

(1) If D ⊂ D′, then µ(D) ≤ µ(D′).
(2) µ(D) = µ(D).

(3) µ(conv(D)) = µ(D).
(4) µ(tD + (1− t)D′) ≤ tµ(D) + (1− t)µ(D′),∀t ∈ [0, 1].
(5) µ(D) = 0 if and only if D is relatively compact.
(6) For every λ ∈ C, we have µ(λD) = |λ|µ(D).
(7) µ(D +D′) ≤ µ(D) + µ(D′).
(8) µ(D ∪D′) = max(µ(D), µ(D′)).
(9) If T ∈ L(X), then µ(T (D)) ≤ ‖T‖µ(D).

Remark 1.1. We notice that the definition of the Kuratowskii’s measure, which
is restricted to bounded subsets, can be extended to all subsets by the following
definition (see [20]).

γ(D) :=

{
µ(D) if D is bounded,
∞ if D is unbounded.

Definition 1.3. Given an operator T ∈ L(X,Y ), we define its Kuratowskii’s
measure γ(T ) by

(1.1) γ(T ) = sup{γ(T (D))

γ(D)
, D ∈MX , γ(D) > 0}.

In the next proposition, we recall some properties of the Kuratowskii’s mea-
sure of a bounded linear operator.

Proposition 1.2 ([6,10]). Let X be a Banach space and T ∈ L(X). Then, we
have the following properties:

(i) γ(T ) = 0 if, and only if, T ∈ K(X).
(ii) If S ∈ L(X), then γ(ST ) ≤ γ(S)γ(T ).
(iii) γ(T +K) = γ(K), ∀K ∈ K(X).
(iv) γ(T + S) ≤ γ(T ) + γ(S),∀S ∈ L(X).
(v) γ(T ) ≤ ‖T‖.

The paper is organized in the following way: In Section 2, we prove that
an upper semi-Fredholm operator can be characterized by means of relatively
demicompactness concept. Furthermore, we give a characterization of relatively
demicompact operators by means of Kuratowskii’s measure of noncompactness.
Section 3 is devoted to investigate the results obtained in Section 2 to give some
properties of demicompact operators involving the first and the second adjoint
of a bounded operator acting on a Banach space.
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2. Characterization of relatively demicompact operators

We start this section by the following definition of relative demicompactness.

Definition 2.1 ([13]). Let X be a Banach space, S0, T ∈ C(X) such that
D(T ) ⊂ D(S0). We say that T is S0-demicompact if every bounded sequence
(xn)n in D(T ) such that (S0xn − Txn)n converges on X has a convergent
subsequence.

We denote by

DC(S0)(X) := {T ∈ C(X) such that T is S0-demicompact},
and

DCb(S0)(X) := {T ∈ L(X) such that T is S0-demicompact}.
Note that if we put S0 = I, then we recover the usual definition of demicom-

pact operator. In this case the previous sets will simply be denoted by DC(X)

and DCb(X) respectively. It was shown in [13] that if X is a Banach space

such that X is finite dimensional, then L(X) = DCb(S0)(X), where S0 is any
bounded operator from X into itself.

Remark 2.1. (i) It should be noticed that if we assume that T is S0-demi-
compact for some S0 ∈ K(X), then T is S-demicompact for all S ∈ K(X).
Indeed, let (xn)n be a bounded sequence on X, S0 a compact operator such
that (S0xn − Txn)n converges on X. Given an operator S ∈ K(X) we can
write

Sxn − Txn = (S − S0)xn + S0xn − Txn.
Since S − S0 ∈ K(X), then (S0xn − Txn)n has a convergent subsequence. By
using the fact that T is S0-demicompact, we deduce that (xn)n has a convergent
subsequence. It follows that T is S-demicompact.

(ii) If X is a Banach space and T ∈ DC(X), then for every bounded, invert-
ible operator S defined on X, STS−1 is demicompact.

We start this section by showing that a compact operator may be “moved”
to a demicompact operator under a small perturbation. More precisely, we
have the following result.

Proposition 2.1. Let T and T0 be two bounded operators on a Banach space
X. Assume that T0 ∈ K(X), and there exist nonnegative constants a and b
such that b < 1 and, for every x ∈ X,

‖Tx‖ ≤ a‖T0x‖+ b‖x‖.

Then, T ∈ DCb(X).

Proof. For all x ∈ X,
‖Tx‖ ≤ a‖T0x‖+ b‖x‖.

Hence,
∀x ∈ X, ‖(I − T )x‖ ≥ −a‖T0x‖+ (1− b)‖x‖.
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Thus,

‖x‖ ≤ 1

1− b
‖(I − T )x‖+

a

1− b
‖T0x‖.

Now, take (xn)n a bounded sequence of X such that

xn − Txn −→ x ∈ X.
Since T0 is compact, it follows that (T0xn)n has a convergent subsequence
((T0xϕ(n))n), hence (xϕ(n))n is a Cauchy subsequence and so it is convergent

on X. We conclude that T ∈ DCb(X). �

Through the next proposition, we will give a perturbation result for demi-
compact operators.

Proposition 2.2. (i) Let T and T0 be two linear operators with the same
domain D acting on a Banach space X. Suppose that T0 ∈ DC(X) and there
exist nonnegative constants a and b such that b < 1, a < 1 and for all x ∈ D,

‖Tx− T0x‖ ≤ a‖x− Tx‖+ b‖x− T0x‖.
Then, T ∈ DC(X).

(ii) Let X be a Banach space, and (T, T0) ∈ L(X) × L(X). Assume that

T0 ∈ DCb(X) and there exist nonnegative constants a and b such that b < 1,
and for all x ∈ X,

‖Tx− T0x‖ ≤ a‖x− Tx‖+ b‖x− T0x‖.

Then, T ∈ DCb(X).

Proof. (i) For every x ∈ D we have,

‖Tx− T0x‖ ≥ | ‖x− T0x‖ − ‖x− Tx‖ | .
Hence, for all x ∈ D,

‖x− T0x‖ ≤
a+ 1

1− b
‖x− Tx‖

and

‖x− Tx‖ ≤ b+ 1

1− a
‖x− T0x‖.

Now, let (xn)n ⊆ D such that xn −→ x ∈ X and Txn −→ y ∈ X, it follows from
the last inequalities that (xn − T0xn)n is a Cauchy sequence so it converges,
put z its limit. Since T0 is closed then, I − T0 ∈ C(X) and so x ∈ D and
z = (I − T0)x. Hence,

‖(I − T )(xn − x)‖ ≤ b+ 1

1− a
‖(I − T0)(xn − x)‖.

Thus,
(I − T )(xn − x) −→ 0.

It follows that
Txn −→ Tx.
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Thus, T ∈ C(X). Now, take a bounded sequence (xn)n ⊆ D such as

xn − Txn −→ x ∈ X.
We infer that ((I−T0)xn)n is a Cauchy sequence, so it is a convergent sequence.
Since T0 is demicompact, we conclude that (xn)n has a convergent subsequence.
Hence, T ∈ DC(X).

(ii) The proof is the same as in (i). �

The following result shows the link between relative demicompact operators
and upper semi-Fredholm operators. Before that let us recall the following key
lemma.

Lemma 2.1 ([20]). An operator A is in Φ+(X) with ind(A) ≤ 0 if and only if
there exist two operators A0 and K such that A0 is in Φ+(X) and is injective,
and K is a finite rank operator such that A = A0 +K.

Now, we are in position to state the following result.

Theorem 2.1. Let T and S0 be two operators acting on a Banach space X.
Suppose that D(T ) ⊂ D(S0) and S0 − T is closed. Then,

T is S0-demicompact if and only if S0 − T ∈ Φ+(X).

Proof. Suppose that S0 − T is closed and is demicompact with respect to S0.
Let (xn) ⊆ N (S0−T )∩BX , then (xn)n is bounded and (S0xn−Txn)n converges
to zero. Since T is S0-demicompact, then (xn)n has a convergent subsequence
(xϕ(n))n, say a its limit. Obviously, for all n ∈ N, ‖xϕ(n)‖ ≤ 1 and so we get
‖a‖ ≤ 1. Moreover, for all n ∈ N, (S0 − T )(xϕ(n)) = 0. Since S0 − T is closed,
then (S0− T )(a) = 0. Hence, a ∈ N (S0− T )∩BX . We conclude that the unit
ball of N (S0 − T ) is compact and so α(S0 − T ) <∞. Therefore,

D(T ) = N (S0 − T )⊕D(T ) ∩M,

where M is a closed subspace of X with finite codimension. Now, we have to
prove that R(S0−T ) is closed. Note that the closed subspace X0 = D(T )∩M
endowed with the graph norm, associated to the closed operator S0 − T , is a
Banach space. Then, by using Theorem 3.12 in [19], it suffices to prove that
there exists a positive constant λ such that for every x ∈ X0,

‖(S0 − T )x‖ ≥ λ‖x‖S0−T ,

where ‖x‖S0−T := ‖x‖+ ‖(S0 − T )x‖. If that is not the case, then there exists
a sequence (xn)n of X0 such that for all n ∈ N,

‖xn‖S0−T = 1 and ‖(S0 − T )xn‖ → 0.

Since T is S0-demicompact and (xn)n is bounded, there exists a subsequence
(xϕ(n))n of (xn)n which converges to x ∈ X0. By using the fact that S0 − T
is closed, we get (S0 − T )x = 0 and then x = 0. This is absurd because of
the continuity of the norm which leads to ‖x‖ = 1. Now, we suppose that
S0 − T ∈ Φ+(X). There are two cases:
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First case: If ind(S0 − T ) > 0, then S0 − T ∈ Φ(X). By using Theorem 7.2
in [19], there exist A ∈ L(X) and K ∈ K(X) such that

A(S0 − T ) = I +K.

Let (xn)n be a bounded sequence of D(T ) such that

(S0 − T )xn −→ x ∈ X.

Then, (A(S0−T )xn)n converges to Ax. Hence, (xn +Kxn)n converges to Ax.
Since K is compact, then (Kxn)n has a convergent subsequence and so (xn)n
has also a convergent subsequence.

Second case: If ind(S0 − T ) ≤ 0. Then, by using Lemma 2.1, there exist a
bounded below operator A0 and K ∈ K(X) such that

S0 − T = A0 +K.

Let (xn)n be a bounded sequence in D(T ) such that

(S0 − T )xn −→ x ∈ X.

Then,

(A0 +K)xn −→ x ∈ X.
Since K is compact, then (Kxn)n has a convergent subsequence (Kxϕ(n))n.
Consequently, (A0xϕ(n))n is a convergent sequence and so it is a Cauchy se-
quence. By using the fact that A0 is bounded below, we deduce that (xn)n has
a convergent subsequence. It follows that T is S0-demicompact. �

Now, we will give a characterization of demicompact bounded projections.

Corollary 2.1. Let X be a Banach space and P a bounded projection on X.
Then, the following assertions are equivalent:

(i) P ∈ DCb(X).
(ii) P ∈ K(X).
(iii) I − P ∈ Φb(X) and ind(I − P ) = 0.

Proof. (i)⇒(ii) Suppose that P is demicompact. Then, by using Theorem 2.1,
we infer that I − P ∈ Φ+(X). Hence, R(P ) = N (I − P ) is finite dimensional
space. This shows that P is a finite rank operator. Consequently, P ∈ K(X).

(ii)⇒(iii) This is a well known result (see [1, 19]).
(iii)⇒(i) Since I−P ∈ Φb(X), then I−P ∈ Φb

+(X). By using Theorem 2.1,
we obtain the desired result. �

As a consequence of the last theorem, we have the following result.

Corollary 2.2. Let X be a Banach space and (T, S) ∈ L(X) × L(X). Let
n ≥ 2 and X1, . . . , Xn be n subspaces of X. Assume that

(i) X = ⊕n
k=1Xk,

(ii) For every k ∈ {1, . . . , n}, T|Xk
:= Tk ∈ L(Xk), and

(iii) For every k ∈ {1, . . . , n}, S|Xk
:= Sk ∈ L(Xk).
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Then, T is S-demicompact if and only if for every k ∈ {1, . . . , n}, Tk is
Sk-demicompact.

Proof. Hypothesis (ii) let us write

T = T1 ⊕ · · · ⊕ Tn.
Similarly, by hypothesis (iii) we have

S = S1 ⊕ · · · ⊕ Sn.

Hence,
T − S = (T1 − S1)⊕ · · · ⊕ (Tn − Sn).

Now when applying Theorem 2.1, we get

T is S-demicompact⇐⇒ T − S ∈ Φb
+(X)

⇐⇒ Tk − Sk ∈ Φb
+(Xk) for every k ∈ {1, . . . , n}

⇐⇒ Tk is Sk-demicompact for every k ∈ {1, . . . , n}. �

Some topological properties of DCb(S0)(X) are provided in the following
proposition.

Proposition 2.3. Let X be a Banach space, S0 ∈ L(X). Then, DCb(S0)(X)
is an open subset of L(X) and the index is constant on every component of

DCb(S0)(X). Moreover, when X is a Hilbert space, DCb(S0)(X) has an infi-

nite disjoint arcwise connected components. Precisely, we have DCb(S0)(X) =
F−∞

⋃
(
⋃

n∈Z Fn), where

Fn = {T ∈ DCb(S0)(X) : ind(S0 − T ) = n, n ∈ Z}.

Proof. We can easily show that the application Ψ : T 7−→ S0 − T is an homeo-
morphism of L(X). By using Theorem 2.1, we get DCb(S0)(X) = Ψ−1(Φb

+(X)).

Since Φb
+(X) is an open set of L(X), then DCb(S0)(X) is an open set.

Now, suppose that X is a Hilbert space. By using Theorem 5.1 in [8], we
deduce that the components of Φb

+(X) are

Hn = {T ∈ Φb
+(X) : ind(T ) = n, n ∈ Z}.

Moreover, the components Hn, n ∈ Z are arcwise connected (for more details
see [9]). Now, by using the homeomorphism Ψ of L(X), we deduce that the

components of DCb(S0)(X) are the sets: Fn, n ∈ Z. Furthermore, by using

again the homeomorphism Ψ, we deduce that the components of DCb(S0)(X)
are arcwise connected. �

The following lemma will be useful for the proof of the next theorem.

Lemma 2.2. Let X and Y be two infinite dimensional Banach spaces and
A ∈ C(X,Y ). Suppose that there exists a positive constant C such that for
every x ∈ D(A)

‖x‖ ≤ C‖Ax‖.
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Then, for every bounded set D ⊆ D(A) we have

γ(D) ≤ 2Cγ(A(D)).

Proof. Let D be a bounded set of D(A). If γ(A(D)) = +∞, then the in-
equality γ(D) ≤ 2Cγ(A(D)) is trivial. Suppose that γ(A(D)) < +∞. Take
r > γ(A(D)), then there exists a finite number of sets V1, . . . , Vn; n ≥ 1 with
diameter less than or equal r such that

A(D) ⊆
n⋃

k=1

Vk.

Note that we can suppose that

A−1(Vj) 6= ∅; j = 1, . . . , n.

Obviously, we have

D ⊆
n⋃

k=1

A−1(Vk).

Fix arbitrarily xk ∈ A−1(Vk); k = 1, . . . , n. Now, take z ∈ D. Then, there
exists k ∈ {1, . . . , n} such as A(z) ∈ Vk. Hence,

‖z − xk‖ ≤ C‖A(z)−A(xk)‖
≤ Cr.

Thus,

D ⊆
n⋃

k=1

B(xk, Cr).

Now, using the properties of the Kuratowskii’s measure we get

γ(D) ≤ Crγ(BX).

By using the fact that γ(BX) = 2 (see [3]), we conclude that

γ(D) ≤ 2Cr.

Letting r −→ γ(A(D)), we deduce that

γ(D) ≤ 2Cγ(A(D)). �

Now, we give a characterization of relatively demicompact operators by
means of Kuratowskii’s measure of noncompactness.

Theorem 2.2. Let X be a Banach space, T and S0 be two operators on X
such that D(T ) ⊂ D(S0) and S0 − T is closed. The following statements are
equivalent:

(i) T is S0-demicompact.
(ii) There exists a positive constant C such that for all D ⊆ D(T ),

γ(D) ≤ Cγ(S0 − T )(D).
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Proof. (i)=⇒(ii) Suppose first that T is S0-demicompact. Then, by using The-
orem 2.1, S0−T ∈ Φ+(X). Now, if ind(S0−T ) > 0, then there exist a bounded
operator A and a compact operator K such that

A(S0 − T ) = I +K.

Let D be a bounded set of X.
Hence,

γ(D) ≤ γ(A(S0 − T )(D))

≤ ‖A‖γ((S0 − T )(D)).

In the case where ind(S0 − T ) ≤ 0, then, by using Lemma 2.1, there exist a
compact operator K and a bounded below operator A0 such that S0 − T =
K +A0. Let β be a positive constant such that for all x ∈ D(T ),

‖x‖ ≤ β‖A0x‖.
Taking into account Lemma 2.2, we deduce that for any bounded subset D of
D(T ),

γ(D) ≤ 2βγ(A0(D))

≤ 2βγ((S0 − T )(D)).

Choose C = max(‖A‖, 2β), then for any bounded subset D of D(T ) we have

γ(D) ≤ Cγ(S0 − T )(D).

(ii)=⇒(i) Suppose that there exists a positive constant C such that for every
bounded set D of X,

γ(D) ≤ Cγ(S0 − T )(D).

Let (xn)n be a bounded sequence of D(T ) such that

(S0 − T )xn −→ x ∈ X.
Choose D = {xn : n ∈ N}. It is clear that D is a bounded set of D(T ) such
that γ(S0 − T )(D) = 0. Hence γ(D) = 0, so that (xn)n has a convergent
subsequence. It follows that T is S0-demicompact. �

The characterization of relatively demicompact operators proved in the last
theorem will be not valid if we replace the Kuratowskii’s measure of an operator
by its norm. More precisely we have the following remark.

Remark 2.2. Let X be a Banach space, T and S0 be two operators on X such
that D(T ) ⊂ D(S0) and S0 − T is closed. Assume that there exists a positive
constant C such that for every x ∈ D(T )

‖x‖ ≤ C‖S0x− Tx‖.
Then, T is S0-demicompact. The reciprocal is not true. Indeed, suppose that
there exists a positive constant C such that for every x ∈ D(T ),

‖x‖ ≤ C‖S0x− Tx‖.
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Then, S0−T is bounded below. Hence S0−T ∈ Φ+(X). In view of Theorem 2.1
we infer that T is S0-demicompact. Now, suppose that X is finite dimensional.
Let T ∈ L(X) such that N (T ) 6= {0}. Put S0 = 2T , then T is S0-demicompact.
However, S0 − T = T is not bounded below because it is not injective.

Corollary 2.3. Let T be a closed operator with domain D(T ) on a Banach
space X. If I − T is bounded below, then T is demicompact.

Proof. Let T ∈ C(X) with domain D(T ) such that I − T is bounded below. It
follows that, there exists a positive constant C such as, for every x ∈ D(T ),

‖(I − T )(x)‖ ≥ C‖x‖.

Let D be a bounded subset of D(T ), then

γ(D) ≤ 1

C
γ(I − T )(D).

We notice that the last inequality is true even if γ(I − T )(D) is infinite. We
conclude, by using Theorem 2.2, that T is demicompact. �

Corollary 2.4. Let T and S0 be two bounded, commuting operators acting on
a Banach Space X. Suppose that there exists a complex polynomial P such that

(i) P (1) = 1, and
(ii) P (T ) is P (S0)-demicompact.

Then, T is S0-demicompact.

Proof. Let P =
∑n

k=0 akX
k ∈ C[X]. Suppose that P (1) = 1. Since TS0 =

S0T , we have

P (S0)− P (T ) =

n∑
k=0

akk =

n∑
k=0

akS
k
o −

n∑
k=0

akT
k

=

n∑
k=0

ak(Sk
0 − T k)

= (S0 − T )

n∑
k=1

ak

k∑
j=1

Sk−j
0 T j

= (S0 − T )Q(S0, T ).

Q is clearly a polynomial in two variables, precisely,

Q(X,Y ) =

n∑
k=1

ak

k∑
j=1

Xk−jY j .

Since T and S0 are bounded, then Q(S0, T ) ∈ L(X). Now, by hypothesis (ii),
P (T ) is P (S0)-demicompact. By using Theorem 2.2, there exists a positive
constant C such as, for every bounded subset D ⊆ X,

γ(D) ≤ Cγ(P (S0)− P (T ))(D).
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Thus, for every bounded subset D ⊆ X,

γ(D) ≤ Cγ(P (S0)− P (T ))(D)

≤ Cγ((S0 − T )Q(S0, T ))(D)

≤ C‖Q(S0, T )‖γ(S0 − T )(D).

Hence, by applying Theorem 2.2, we conclude that T is S0-demicompact. �

Remark 2.3. Let X be a Banach space and T ∈ L(X). Assume that Tn is
demicompact for some positive integer n. Then, T is demicompact. Indeed, it
suffices to apply Corollary 2.4 with P = Xn and S0 = I.

Corollary 2.5. Let X be a Banach space, (S, T ) ∈ L(X) × L(X). Assume
that ST − TS ∈ K(X). Then, for every integer n ≥ 1,

(ST )n ∈ DCb(X) if and only if (TS)n ∈ DCb(X).

Proof. Let n be a positive integer. Suppose that (ST )n ∈ DCb(X). In view of
Theorem 2.2, there exists a positive constant Cn such as for all D ∈MX ,

γ(D) ≤ Cnγ(I − (ST )n)(D).

Hence, for every bounded set D,

γ(D) ≤ Cnγ(I − (TS)n)(D) + Cnγ((TS)n − (ST )n)(D).

Using the following identity

(TS)n − (ST )n =

n−1∑
k=0

(TS)k(TS − ST )(ST )n−1−k,

we infer that (TS)n − (ST )n ∈ K(X). Hence, for all D ∈MX ,

γ((TS)n − (ST )n)(D) = 0.

Accordingly, for all D ∈MX ,

γ(D) ≤ Cnγ(I − (TS)n)(D).

In view of Theorem 2.2, we conclude that (TS)n ∈ DCb(X). The reciprocal is
proved similarly. �

Theorem 2.3. Let X be a Banach space, T ∈ L(X) and let P be a complex
polynomial. Assume that

(i) P (1) = 1, and

(ii) lim
p→+∞

(γ(P (T p)))
1
p = 0.

Then, T ∈ DCb(X).

Proof. (i) Since lim
p→+∞

(γ(P (T p)))
1
p = 0, there exists p0 ∈ N∗ such that

γ(P (T p0)) < 1.
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Now, take a bounded sequence (xn)n in X such that yn := xn − P (T p0)xn
converges to some element x ∈ X. Then,

{xn} ⊂ {yn}+ P (T p0){xn}.
Since the operator P (T p0) is bounded, then

(1− γ(P (T p0)))γ{xn} = 0.

Thus, γ{xn} = 0 and hence there exists a convergent subsequence of (xn)n. It
follows that P (T p0) is demicompact. By using Corollary 2.4 we deduce that
T p0 is demicompact. Taking into account Remark 2.3, we conclude that T is
demicompact. �

As a consequence, we can give the following result.

Corollary 2.6. Let X be a Banach space, T ∈ L(X). Assume that

lim
p→+∞

(γ(T p))
1
p = 0.

Then,
(i) T ∈ DCb(X).
(ii) I − T is a Fredholm operator. Moreover, ind(I − T ) = 0.

Proof. (i) Let P = X, then by applying Theorem 2.3, we deduce that T ∈
DCb(X).

(ii) Let λ ∈ [0, 1]. Then,

γ(((λT )p))
1
p = |λ|γ(T p)

1
p .

Thus, lim
p→+∞

(γ((λT )p))
1
p = 0. By applying (i), we get for every λ ∈ [0, 1], λT ∈

DCb(X). Hence, by using Theorem 2.1, we infer that for every λ ∈ [0, 1], I −
λT ∈ Φb

+(X). Since the index is continuous on Φb
+(X) and constant on every

component of Φb
+(X), then

ind(I − λT ) = ind(I − T )

= ind(I)

= 0.

It follows that I − T is a Fredholm operator. �

Proposition 2.4. Let T and S0 be two bounded operators of a Banach space
X. Suppose that γ(I− (S0−T )) < 1, then T is S0-demicompact. In particular,
if ‖I − (S0 − T )‖ < 1, then T is S0-demicompact.

Proof. Let (xn)n be a bounded sequence of X such that (S0xn − Txn)n con-
verges to an element x ∈ X. Since

xn = (I − (S0 − T ))xn + (S0 − T )xn,

it follows by using the properties of the Kuratowskii’s measure, that

γ{xn} ≤ γ{(I − S0 − T )xn}
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≤ γ(I − S0 − T )γ{xn}.
Therefore, (1 − γ(I − S0 − T ))γ{xn} ≤ 0 and so γ{xn} = 0. Consequently,
(xn)n has a convergent subsequence. We conclude that T is S0-demicompact.
Now, suppose that

‖I − S0 − T‖ < 1.

Then,

γ(I − S0 − T ) ≤ γ(I − S0 − T )

< 1.

Hence, T is S0-demicompact. �

Now, a generalization of the preceding result will be given in the following
proposition.

Proposition 2.5. Let T and S0 be two bounded operators of a Banach space
X. We suppose that there exists n ∈ N \ {0} such that γ(I − (S0 − T )n) < 1,
then T is S0-demicompact. In particular, if ‖I − (S0 − T )n‖ < 1 for some
n ∈ N \ {0}, then T is S0-demicompact.

Proof. Let n ∈ N\{0} such that γ(I−(S0−T )n) < 1. Take a bounded sequence
(xk)k such that ((S0−T )xk)k converges to x ∈ X, then ((S0−T )nxk)k converges
to y = (S0 − T )n−1x ∈ X. Since

xk = (I − (S0 − T )n)xk + (S0 − T )nxk.

Then,

γ{xk} ≤ γ{(I − (S0 − T )n)xk}
≤ γ(I − (S0 − T )n)γ{xk}.

We conclude, as in the previous proposition, that γ{xk} = 0. Thus, T is S0-
demicompact. For the rest of the proof, we use the fact that γ(I−(S0−T )n) ≤
‖I − (S0 − T )n‖. �

The following result shows the connection between demicompact operators
and relatively demicompact ones.

Proposition 2.6. Let X be a Banach space, T and S0 two bounded operators
on X. Then, we have

T is S0-demicompact =⇒ Gr(I − S0 + T ) ⊆ DCb(X).

Proof. Let A ∈ Gr(I − S0 + T ), then there exists K ∈ K(X) such that

(I − S0 + T )A = I +K.

Now, let (xn)n be a bounded sequence of X such that

xn −Axn −→ x ∈ X.
Then,

xn − (I +K − TA+ S0A)xn −→ x.
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It follows that
−Kxn + (T − S0)Axn −→ x.

Since K is compact, then (Kxn)n has a convergent subsequence. Hence,
((S0 − T )Axn)n has a convergent subsequence. By using the fact that T is
S0-demicompact, we conclude that (Axn)n has a convergent subsequence, then

(xn)n has a convergent subsequence. It follows that A ∈ DCb(X). �

Now, let us recall the quantity Γ(T ) of a bounded linear operator T .

Definition 2.2. Let X, Y be two infinite dimensional Banach spaces and
T ∈ L(X,Y ). We define the quantity Γ(T ) by

Γ(T ) := inf{γ(T|M ) : M ⊂ X}.
The subset M designs a closed subset of X with finite codimension.

The following lemma is very useful for the next results.

Lemma 2.3 ([19]). Let X,Y be two Banach spaces and T ∈ L(X,Y ). Suppose
that T /∈ Φ+(X,Y ), then for every ε > 0 there is an infinite dimensional closed
subspace M ⊂ X and K ∈ K(X,Y ) such that T = K on M and ‖K|M‖ ≤ ε.

Theorem 2.4. Let X be an infinite dimensional Banach space, (T, S0) ∈
L(X)× L(X). Assume that ‖T‖ < Γ(S0), then T is S0-demicompact.

Proof. Suppose that ‖T‖ < Γ(S0). If T is not S0-demicompact, then by using
Theorem 2.1, we get S0 − T /∈ Φ+(X). Now, by using Lemma 2.3, we deduce
that for every ε > 0, there is an infinite dimensional closed subspace M ⊂ X
with finite codimension and K ∈ K(X,Y ) such that S0 − T = K on M and
‖K|M‖ ≤ ε. Therefore, for all x ∈M ,

‖S0x‖ ≤ ε‖x‖+ ‖Tx|.
It follows that for every bounded set D ⊂M ,

γ(S0(D)) ≤ εγ(D) + γ(T (D)).

Thus,

γ(S0|M ) ≤ ε+ γ(T|M )

≤ ε+ γ(T ).

We conclude that

Γ(S0) ≤ ε+ γ(T )

≤ ε+ ‖T‖.

Letting ε→ 0+, we get Γ(S0) ≤ ‖T‖. This is absurd, then T is S0-demicompact.
�

We notice that there are several measures of operators, like essential norm,
that can be used to characterize demicompact operator, among this operator
quantities we introduce the following measure.
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Definition 2.3 ([11,20]). Let X be an infinite dimensional Banach space and
T ∈ L(X). We define

∆(T ) = inf
M
‖T|M‖,

where M represents an infinite dimensional, closed subspace of X, and T|M
denotes the restriction of T to the subspace M .

Now, we give a characterization of a demicompact operator T using the
quantity ∆(T ).

Theorem 2.5. Let X an infinite dimensional Banach space and T ∈ L(X), if
∆(T ) > 1, then T is demicompact.

Proof. Suppose that ∆(T ) > 1 but T is not demicompact, then by Theorem 2.1,
I − T /∈ Φ+(X). By using Theorem 2.3 combined with Theorem 14.29 in [19],
we infer that for every ε > 0, there exist a closed infinite-dimensional subspace
M with finite codimension and a compact operator K such that I −T = K on
M , with ‖K|M‖ ≤ ε. Hence,

‖T|M‖ ≤ 1 + ε.

It follows that, for every ε > 0,

∆(T ) ≤ 1 + ε.

Next, letting ε → 0+, we get ∆(T ) ≤ 1 which is absurd. We conclude that T
is demicompact. �

3. Duality and demicompactness

In this section, we show that the demicompactness of a bounded linear op-
erator, as well as, of its first and second duals, can be ensured by means of its
essential norm.

Definition 3.1 ([5,11]). Let X be a Banach space, and T ∈ L(X). We define
the essential norm of T by

‖T‖e = inf{‖T −K‖ : K ∈ K(X)}.

Let X be a Banach space. In what follows we denote by X∗ and X∗∗ its
first and second dual respectively.

Let us recall some properties of the essential norm through the following
proposition.

Proposition 3.1 ([5]). Let X be a Banach space, and T ∈ L(X). Then we
have

(i) ‖T ∗‖e ≤ ‖T‖e,
(ii) ‖T ∗‖e = ‖T ∗∗‖e,

where T ∗ and T ∗∗ are respectively the first and the second adjoint of T .
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Remark 3.1. It was shown in [5] that, if X is a reflexive space then, for all
T ∈ L(X) we have ‖T‖e = ‖T ∗‖e. But, for almost common Banach spaces we
have

1

2
‖T‖e ≤ ‖T ∗‖e

≤ ‖T‖e.

Theorem 3.1. Let X be a Banach space and T ∈ L(X). Suppose that ‖T‖e <
1, then

(i) T , T ∗ and T ∗∗ are demicompact operators.
(ii) I − T ∈ Φ(X), T ∗ ∈ Φb

+(X∗) and T ∗∗ ∈ Φb
+(X∗∗).

(iii) ind(I − T ) = ind(I − T ∗) = ind(I − T ∗∗) = 0.

Proof. We suppose that ‖T‖e < 1 then, there exists K ∈ K(X) such that

‖T‖e ≤ ‖T −K‖
< 1.

Now, let (xn)n be a bounded sequence on X such that

yn := xn − Txn −→ x ∈ X.
Then, for all (n,m) ∈ N2 we have

‖xn − xm‖ = ‖yn − ym +K(xn − xm) + (T −K)(xn − xm)‖
≤ ‖yn − ym‖+ ‖Kxn −Kxm‖+ ‖T −K‖(‖xn − xm‖).

Hence,

‖xn − xm‖ ≤
1

1− ‖T −K‖
(‖yn − ym‖+ ‖Kxn −Kxm‖).

Since K is compact and (xn)n is bounded then, (Kxn)n has a convergent sub-
sequence which we note again (Kxn)n. Noticing that (yn)n is a converging
sequence, then (xn)n is a Cauchy sequence and so it has a convergent subse-
quence. We conclude that T is demicompact. Now, if ‖T‖e < 1 then, for all
λ ∈ [0, 1] we have ‖λT‖e < 1, and so λT is demicompact. By using Theorem
2.1, we get I − λT ∈ Φb

+(X). Combining the fact that the index is continuous

on Φb
+(X) and it is constant on every component of Φ+(X), we deduce that

ind(I − λT ) = ind(I − T )

= ind(I)

= 0.

Hence, I −T ∈ Φ(X). Now, suppose that ‖T‖e < 1, then by using Proposition
3.1, we get

‖T ∗∗‖e = ‖T ∗‖e
≤ ‖T‖e
< 1.
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Therefore, T ∗ and T ∗∗ are demicompact operators. Furthermore, we have

ind(I − T ) = ind(I − T ∗)
= ind(I − T ∗∗)
= 0.

Thus, (I − T ∗, I − T ∗∗) ∈ Φ(X∗)× Φ(X∗∗). �

As a consequence of this Theorem, we have the following corollary.

Corollary 3.1. Let X be a Banach space and T ∈ L(X). Assume that there
exists a complex polynomial P such that the following conditions hold

(i) P (1) = 1, and
(ii) ‖P (T )‖e < 1.

Then, T is demicompact.
In particular, if there exists n ∈ N such that ‖Tn‖e < 1, then
(i) T , T ∗ and T ∗∗ are demicompact operators.
(ii) ind(I − T ) = ind(I − T ∗) = ind(I − T ∗∗) = 0.
(iii) I − T ∈ Φ(X), I − T ∗ ∈ Φ(X∗) and I − T ∗∗ ∈ Φ(X∗∗).

Proof. If ‖P (T )‖e < 1, then in view of Theorem 3.1, P (T ) is demicompact. By
using Corollary 2.4, we infer that T is demicompact. Now, if ‖Tn‖e < 1 for
some n ∈ N \ {0}, then for all λ ∈ [0, 1], ‖(λT )n‖e < 1 so, λT is demicompact
for all λ ∈ [0, 1]. Hence, I − λT ∈ Φ+(X). The continuity of the index ensure
that

ind(I − T ) = ind(I − λT )

= ind(I)

= 0.

Hence, T ∈ Φ(X). Since

‖(T ∗)n‖e = ‖(T ∗∗)n‖e
≤ ‖Tn‖e
< 1,

then, we may complete the proof with no difficulty. �
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