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CONTROLLABILITY FOR SEMILINEAR STOCHASTIC

FUNCTIONAL DIFFERENTIAL EQUATIONS WITH

DELAYS IN HILBERT SPACES

Daewook Kim* and Jin-Mun Jeong**

Abstract. In this paper, we investigate necessary and sufficient
conditions for the approximate controllability for semilinear sto-
chastic functional differential equations with delays in Hilbert spaces
without the strict range condition on the controller even though the
equations contain unbounded principal operators, delay terms and
local Lipschitz continuity of the nonlinear term.

1. Introduction

In this paper, we study the approximate controllability for the fol-
lowing stochastic functional differential equations with delays in Hilbert
spaces:

{
dx(t) = [Ax(t) +

∫ 0
−h a(s)A1x(t+ s)ds+Bu(t)]dt+ f(t, xt)dω, t > 0,

x(0) = φ0 ∈ L2(Ω, H), x(s) = φ1(s), s ∈ [−h, 0],

(1.1)

where h > 0, a(·) is Hölder continuous, ω(t) stands for K-valued Brow-
nian motion or Winner process with a finite trace nuclear covariance
operator Q, and g, f , are given functions satisfying some assumptions.
Moreover, A : D(A) ⊂ H → H is unbounded and A1 is a closed linear
operator with domain containing that of A. Let U be a Banach space
and the controller B be a linear bounded operator from U to H.
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This kind of stochastic differential equations arises in many practi-
cal mathematical models, such as, option pricing, population dynamics,
physical, biological and engineering problems, etc. (see [4, 6]). Many
authors have studied for the theory of stochastic differential equations
in a variety of ways in [1, 2] and reference therein. Recently, the ex-
istence results impulsive stochastic neutral differential equations have
been studied by [7, 10], and impulsive neutral stochastic differential in-
clusions with nonlocal initial conditions by Lin and Hu [10, 12].

Most literature works have been devoted the approximate control-
lability for semilinear control systems with strict assumptions on the
control action operator B. Moreover, in the previous works, the con-
cept of fundamental solution (or Green function) is not used, so that the
calculations to obtain the regularity and controllability conditions are
complicated.

In this paper we investigate necessary and sufficient conditions for the
approximate controllability for (1.1) without the strict range condition
on B and the uniform boundedness in [16] even though the system (1.1)
contains unbounded principal operators, delay terms and local Lipschitz
continuity of the nonlinear term. For the basis of our study, we construct
the fundamental solution for the linear systems(see [8, 13])and establish
variations of constant formula of solutions for stochastic equation (1.1).

2. Preliminaries and lemmas

2.1. Retarded linear equations

The inner product and norm in H are denoted by (·, ·) and |·|, respec-
tively. V is another Hilbert space densely and continuously embedded
in H. The notations || · || and || · ||∗ denote the norms of V and V ∗ as
usual, respectively. For brevity we may regard that

(2.1) ||u||∗ ≤ |u| ≤ ||u||, u ∈ V.

Let A be the operator associated with the sesquilinear form satisfying

(2.2) Re (Au, u) ≥ c0||u||2, u ∈ V.

Then A is a bounded linear operator from V to V ∗ according to the Lax-
Milgram theorem, and A generates an analytic semigroup S(t) = etA in
both H and V ∗ as in Theorem 3.6.1 of [14]. Moreover, we have the
following sequence

(2.3) D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗,
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where each space is dense in the next one and continuous injection.

Lemma 2.1. With the notation (2.3), we have

(V, V ∗)1/2,2 = H, (D(A), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and
V ∗(Section 1.3.3 of [15]).

First, we consider the following linear retarded functional differential
equation with forcing term k:

(2.4)

{
x
′
(t) = Ax(t) +

∫ 0
−h a(s)A1x(t+ s)ds+ k(t), t > 0,

x(0) = φ0, x(s) = φ1(s) − h ≤ s ≤ 0.

In order to construct the fundamental solution, we need to impose the
following condition:

Assumption (A). The function a(·) is assumed to be real valued
and Hölder continuous of order ρ in the interval [−h, 0]:

(2.5) |a(s)| ≤ H0, |a(s)− a(τ)| ≤ H0(s− τ)ρ, −h ≤ τ, s ≤ 0

for a constant H0.

Let W (·) be the fundamental solution of the linear equation (2.4) in
the sense of Nakaglri [11], which is the operator valued function satisfy-
ing

{
W (t) = S(t) +

∫ t
0 S(t− s){

∫ 0
−h a(τ)A1W (s+ τ)dτ}ds, t > 0,

W (0) = I, W (s) = 0, −h ≤ s < 0,

(2.6)

where S(·) is the semigroup generated by A. For each t > 0, we introduce
the operator valued function Ut(·) defined by

Ut(s) =

∫ s

−h
W (t− s+ σ)a(σ)A1dσ : V → V, s ∈ [−h, 0].

Then (2.4) is represented

x(t) = W (t)φ0 +

∫ 0

−h
Ut(s)φ

1(s)ds+

∫ t

0
W (t− s)k(s)ds.

From Proposition 4.1 of [8] or Theorem 1 of [13], it follows the following
results.
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Lemma 2.2. Under Assumption (A), the fundamental solution W (t)
to (2.4) exists uniquely and is bounded. Applying Proposition 4.1 of [8]
to the equation (2.4), there exists a constant C0 > 0 such that

||W (t
′
)−W (t)||L(H) ≤ C0(t

′ − t),(2.7)

||W (t
′
)−W (t)||L(V ∗,V ) ≤ C0(t

′ − t)κ(t− h)−κ(2.8)

for h < t < t
′
, and κ < ρ.

Let T > 0 be arbitrary fixed. Associated with Ut(·), we consider the
operator U : L2(−h, 0;V )→ L2(0, T ;V ) defined by

(2.9) (Uφ1)(t) =

∫ 0

−h
Ut(s)φ

1(s)ds, t ∈ (0, T ]

for φ1 ∈ L2(−h, 0;V ). We can see that U is into and bounded for each
T > 0(see [11]).

Lemma 2.3. Under Assumption (A) and κ < ρ, the operator U de-
fined by (2.9) is Hölder continuous of order (κ+1)/2 in (h,∞) in operator
norm of L(H,V ), i.e., for any T > h there exists a constant CT such
that

(2.10) |(Uφ1)(t′)− (Uφ1)(t)| ≤ CT |t
′ − t|(κ+1)/2.

Proof. Using (V, V ∗)1/2,2 = H and the well known interpolation in-
equality we get from (2.7) and (2.8)

(2.11) ||W (t
′
)−W (t)||L(V ∗,H) ≤ C0(t

′ − t)(1+κ)/2(t− h)−κ/2.

Hence, with aid of (2.11) we have

|(Uφ1)(t′)− (Uφ1)(t)|

≤ C0

∫ 0

−h

∫ s

−h
(t
′ − t)(κ+1)/2(t− s+ σ − h)−κ/2H0||A||L(V ∗,V )||φ1(s)||dσds

≤ C0H0

(
1− κ

2

)−1√
h||A||L(V ∗,V )(t

′ − t)(κ+1)/2(t− h)1−κ/2||φ1||L2(−h,0;V ),

Noting that t− s+ σ > h since t > h, we get (2.10).

By virtue of Lemma 2.1, we can follow the argument of Di Blasio et
al. [3] term by term to deduce the following result.

Proposition 2.4. Assume that (φ0, φ1) ∈ V ×L2(−h, 0;V ) and k ∈
L2(0, T ;V ∗) for T > 0. Then, there exists a solution x of the system
(2.4) such that

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H).
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2.2. Semilinear stochastic differential equations

In this paper (H, | · |) and (K, | · |K) denote real separable Hilbert
spaces. Consider the following retarded semilinear stochastic control
system in Hilbert space H:

{
x
′
(t) = Ax(t) +

∫ 0
−h a1(s)A1x(t+ s)ds+ f(t, xt)dω +Bu(t), t > 0,

x(0) = φ0 ∈ L2(Ω, H), x(s) = φ1(s), s ∈ [−h, 0].

(2.12)

Let (Ω,F , P ) be a complete probability space furnished with complete
family of right continuous increasing sub σ-algebras {Ft, t ∈ I} satisfying
Ft ⊂ F .

An H valued random variables is an F -measurable function x(t) :
Ω → H and the collection of random variables S = {x(t, w) : Ω → H :
t ∈ [0, T ], w ∈ Ω} is a stochastic process. Generally, we just write x(t)
instead of x(t, w) and x(t) : [0, T ]→ H in the space of S

Let {en}∞n=1 be a complete orthonormal basis of K, and let Q ∈
B(K,K) be an operator defined by Qen = λnen with finite Tr(Q) =∑∞

n=1

√
λn = λ < ∞ (Tr denotes the trace of the operator), where

λn ≥ 0(n = 1, 2, · · · ), and B(K,K) denotes the space of all bounded
linea operators from K into K.
{ω(t) : t ≥ 0} be a cylindrical K-valued Wiener process with a finite

trace nuclear covariance operator Q over (Ω,F , P ), which satisfies that

ω(t) =
∞∑
n=1

√
λnwi(t)en, t ≥ 0,

where {wi(t)}∞i=1 be mutually independent one dimensional standard
Wiener processes over (Ω,F , P ). Then the above K-valued stochastic
process ω(t) is called a Q-Wiener process.

We assume that Ft = σ{ω(s) : 0 ≤ s ≤ t} is the σ-algebra generated
by w and FT = F . Let ψ ∈ B(K,H) and define

|ψ|2Q = Tr(ψQψ∗) =
∞∑
n=1

|
√
λnψen|2.

If |ψ|2Q <∞, then ψ is called a Q-Hilbert-Schmidt operator. BQ(K,H)
stands for the space of all Q-Hilbert-Schmidt operators. The comple-
tion BQ(K,H) of B(K,H) with respect to the topology induced by the
norm |ψ|Q, where |ψ|2Q = (ψ,ψ) is a Hilbert space with the above norm
topology.



360 Daewook Kim and Jin-Mun Jeong

Let V be a dense subspace of H as mentioned in Section 2.1. For
T > 0 we define

M2(−h, T ;V ) = {x : [−h, T ]→ V : E(

∫ T

−h
||x(s)||2ds) <∞}.

The spaces M2(−h, 0;V ), M2(0, T ;V ), and M2(0, T ;V ∗) are also de-
fined as the same way and the basic theory of M2 can be founded in
[5].

For h > 0, we assume that φ1 : [−h, 0) → V is a given initial value
satisfying

E(

∫ 0

−h
||φ1(s)||2ds) <∞,

that is, φ1 ∈M2(−h, 0;V ). In this note, a random variable x(t) : Ω→ H
will be called an L2-primitive process if x ∈M2(−h, T ;V ).

Definition 2.5. A stochastic process x : [−h, T ] × Ω → H is called
a solution of (2.12) if

(i) x(t) is measurable and Ft-adapted for each t ≥ 0.
(ii) x(t) ∈ H has cádlág paths on t ∈ (0, T ) such that

(2.13)

x(t) = W (t)φ0+

∫ 0

−h
Ut(s)φ

1(s)ds+

∫ t

0
W (t−s){f(s, xs)dω+Bu(s)}ds,

(iii) x ∈M2(0, T ;V ) i.e., E(
∫ T
0 ||x(s)||2ds) <∞ and C([0, T ];H).

To establish our results, we introduce the following assumptions on
System (2.12). For each s ∈ [0, T ], we define xs : [−h, 0] → H as
xs(r) = x(s+ r), −h ≤ r ≤ 0. We will set

Π = M2(−h, 0;V ).

Assumption (F). Let f : R × Π → B(K,H) be a nonlinear
mapping satisfying the following: for every t ∈ [0, T ], ||x||Π ≤ r, and
||y||Π ≤ r

(i) For any x ∈ Π, the mapping f(·, x) is strongly measurable.
(ii) There exists a function Lf : R+ → R such that

E|f(t, x)− f(t, y)|2 ≤ Lf (r)||x− y||2Π , t ∈ [0, T ].

(iii) The inequality

E|f(t, x)|2 ≤ Lf (r)(||x||Π + 1)2.
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Lemma 2.6. Let x ∈ M2(−h, T ;V ). Then the mapping s 7→ xs
belongs to C([0, T ];Π), and for each 0 < t ≤ T

||xt||Π ≤ ||x||M2(−h,t;V ) = ||φ1||Π + ||x||M2(0,t;V ),

(2.14)

E(||x||2L2(0,t;V )) = ||x||2M2(0,t;V ), ||x·||L2(0,t;Π) ≤
√
t||x||M2(−h,t;V ).

Proof. The first paragraph is easy to verify. In fact, it is from the
following inequality;

||xt||2Π = E
( ∫ 0

−h
||x(t+ τ)||2dτ

)
≤ E

[ ∫ t

−h
||x(τ)||2dτ

]
≤ ||x||2M2(−h,t;V ).

(2.15)

The second paragraph is immediately obtained by definition. From the
above inequality, we have∫ t

0
||xs||2Πds =

∫ t

0

[
E
( ∫ s

s−h
||x(τ ||2dτ

)]2
ds ≤ t||x||2M2(−h,t;V ),

which completes the last paragraph.

The following results on the solvability of equation (2.12) is from [9].

Proposition 2.7. 1) Let Assumptions (A) and (F) be satisfied. As-
sume that (φ0, φ1) ∈ L2(Ω, H) × Π and k ∈ M2(0, T ;V ∗) for T > 0.
Then, there exists a solution x of the system (2.12) such that

x ∈M2(0, T ;V ) ∩ C([0, T ];H) := Z(T ).

Moreover, there is a constant C1 such that

(2.16) ||x||Z(T ) ≤ C1(1 + E(|φ0|2) + ||φ1||Π + ||k||M2(0,T ;V ∗)).

2) Let Assumptions (A) and (F) be satisfied. Assume that (φ0, φ1) ∈
L2(Ω, V ) × M2(−h, 0;D(A)) and k ∈ M2(0, T ;H) for T > 0. Then,
there exists a solution x of the system (2.12) such that

x ∈M2(0, T ;D(A)) ∩ C([0, T ];V ) := Z0(T ).

Moreover, there is a constant C1 such that
(2.17)
||x||Z0(T ) ≤ C1(1 + E(||φ0||2) + ||φ1||M2(−h,0;D(A)) + ||k||M2(0,T ;H)).

Proposition 2.8. Suppose that k ∈M2(0, T ;H) and y(t) =
∫ t
0 W (t−

s)k(s)ds for 0 ≤ t ≤ T . Then there exists a constant C2 such that

||y||M2(0,T ;H) ≤ C2T ||k||M2(0,T ;H),(2.18)
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and

(2.19) ||y||M2(0,T ;V ) ≤ C2

√
T ||k||M2(0,T ;H).

Proof. It is easily obtained that

(2.20) ||y||M2(0,T ;H) ≤ T
√
C0/2||k||M2(0,T ;H).

From Lemma 2.1, (2.17), and (2.20) it holds that

||y||M2(0,T ;V ) ≤M0

√
C1T (C0/2)1/4||k||M2(0,T ;H).

So, if we take a constant C2 > 0 such that

C2 = max{
√
C0/2,M0

√
C1(C0/2)1/4},

the proof is complete.

3. Approximately reachable sets

Let U be a Banach space and the controller operator B be bounded
linear operator from another Banach space U to H. The solution x(t) =
x(t;φ, F, u) of initial value problem (1,1) is the following form:

x(t;φ, f, u) = W (t)φ0 +

∫ 0

−h
Ut(s)φ

1(s)ds+

∫ t

0
W (t− s){f(s, xs)dω

+Bu(s)ds},

Ut(s) =

∫ s

−h
W (t− s+ σ)a(σ)A1dσ.

For T > 0, φ = (φ0, φ1) ∈ L2(Ω, H) ×Π and u ∈ L2(0, T ;U) we define
reachable sets as follows.

LT (φ) = {z ∈ H : |x(T ;φ, 0, u)− z| ≤ ε, ∀u ∈ L2(0, T ;U), ∀ε > 0},
RT (φ) = {z ∈ H : E|x(T ;φ, f, u)− z| ≤ ε, ∀u ∈ L2(0, T ;U), ∀ε > 0}.

Here, we know that reachable sets is independent of the initial data.

Theorem 3.1. For any T > 0 we have

RT (0) ⊂ LT (0).

Proof. Let z0 /∈ LT (0), where LT (0) is the reachable set of the linear
system for the initial value φ = (0, 0). Since LT (0) is a balanced closed
convex subspace, we have αz0 /∈ LT (0) for every α ∈ R, and

inf{|z0 − z| : z ∈ LT (0)} = d.



Controllability for semilinear stochastic equations 363

By the formula (2.16) we have

(3.1) ||x(·; 0, f, u)||M2(0,T ;V ) ≤ C1||Bu||M2(0,T ;H),

where C1 is the constant in Proposition 2.7. For every u ∈M2(0, T ;U),
we choose a constant α > 0 such that

(3.2) C2Tr(Q)
√
T1Lf (r)(||φ1||Π + C1CB||u||L2(0,T ;H) + 1) < αd.

By using Hölder inequality, we have

E
∣∣ ∫ T

T−δ
W (T − s)f(s, xs)dω

∣∣ ≤ C0

√
δTr(Q)Lf (r)(||xs||Π + 1)(3.3)

≤ C0

√
δTr(Q)Lf (r)(||φ1||Π + ||x(·; 0, f, u)||M2(0,T1;V ) + 1).

Hence form (3.1) and (3.2), it follows that

E|x(T ; 0, f, u)− αz0|

≥ E|
∫ T

0
W (T − s)Bu(s)ds− αz0| − E

∣∣ ∫ t

0
S(t− s)f(s, xs)dω

∣∣
≥ αd− C2Tr(Q)

√
T1Lf (r)(||φ1||Π + C1||Bu||M2(0,T ;H) + 1) > 0.

Thus, we have αz0 /∈ RT (0).

We assume the following conditions:

Assumption (B1) For 0 ≤ τ < t ≤ T and u ∈ L2(0, T ;U), the
B(τ, t) from L2(0, T ;U) into H defined by

B(τ, t)k :=

∫ t

τ
W (t− s)Bu(s)ds

induces an invertible operator B̂(τ, t) defined on L2(0, T ;U)/KerB(τ, t)

and there exists a positive constant LB such that ||B̂(τ, t)−1|| ≤ LB, see
[12].

Assumption (B2) For every u ∈ L2(0, T ;U), there exists a constant
CB such that

||Bu||M2(0,T ;H) ≤ CB||u||L2(0,T ;U).

Theorem 3.2. Under Assumptions (A), (B1-2), (F), and T > h, we
have

LT (φ) ⊂ RT (φ), φ ∈ L2(Ω, H)×Π.
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Proof. Let T > h, and let γ > 0 be arbitrary given. We will show
that z ∈ LT (φ) satisfying |z| < γ belongs to RT (φ). Let u ∈ L2(0, T ;U)
be arbitrary fixed. Then by Proposition 2.7, we have

||xu||Z(T ) ≤ C1(1 + E(|φ0|2) + ||φ1||Π + CB||u||L2(0,T ;H)).

where xu is the solution of (1.1) corresponding to the control u.
For any ε > 0, we can choose a constant δ > 0 satisfying

max{δ,
√
δ}

(3.4)

< min
{(

2δC0C1

(
1 + E(|φ0|2)

))−1
,(

C0||U||L(L2(−h,0;V ),L2(0,T ;V ))||φ1||Π
)−1

,
(
C0CT ||φ1||Π

)−1
,(

(C0 + 1)C0

√
TC2Tr(Q)

√
T1Lf (r)

(
||φ1||Π + ||xu||Z(T ) + 1

))−1
,(

M0 +
εM1

8

)−1
,
(
(C0 + 1)C0CBT ||u||L2(0,T ;U)

)−1}
ε/8,

where

M0 =C0C1Tr(Q)Lf (r)
{

1 + E(|φ0|2) + ||φ1||Π + CB||u||L2(0,T ;H)(3.5)

+ CBLB
(
C0||xu||Z(T ) + γ

)}
,

M1 =C0C1CBLBTr(Q)Lf (r).(3.6)

Set

x1 := x(T − δ;φ, f, u) = W (T − δ)φ0 +

∫ 0

−h
UT−δ(s)φ

1(s)ds

+

∫ T−δ

0
W (T − δ − s)f(s, (xu)s)dω +

∫ T−δ

0
W (T − δ − s)Bu(s)ds,

where xu(s) = x(s;φ, f, u) and (xu)s(τ) = x(s+ τ ;φ, f, u) for 0 < t ≤ T
and −h ≤ τ < 0. Consider the following problem:{

y
′
(t) = Ay(t) +

∫ 0
−h a(s)A1y(t+ s)ds+Bu(t), δ < t ≤ T,

y(T − δ) = x1, y(s) = 0 − h ≤ s ≤ 0.
(3.7)

The solution of (3.7) with respect to the control w ∈ L2(T − δ, T ;U) is
denoted by

yw(T ) = W (δ)x1 +

∫ T

T−δ
W (T − s)Bw(s)ds.(3.8)
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Then since z ∈ LT (φ), and LT (φ) = L(0) is independent of the time T
and initial data φ, there exists w1 ∈ L2(T − δ, T ;U) such that

(3.9) |yw1(T )− z| < ε

8
.

and so, by (3.8) and (3.9) we have

|
∫ T

T−δ
W (T − s)Bw1(s)ds| ≤ |yw1(T )− z|+ γ + |W (δ)x1|

≤ C0||xu||Z(T ) + γ +
ε

8
.

Hence, from Assumptions (B1) and (B2), it follows that

(3.10) ||Bw1||M2(0,T ;H) ≤ CBLB
(
C0||xu||Z(T ) + γ +

ε

8

)
Now we set

v(s) =

{
u if 0 ≤ s ≤ T − δ,
w1(s) if T − δ < s < T.

Then v ∈M2(0, T ;U). Observing that

xv(t;φ, f, v) =W (t)φ0 +

∫ 0

−h
Ut(s)φ

1(s)ds+

∫ t

0
W (t− τ){f(τ, (xv)τ )dW

+Bv(τ)dτ},

from (3.9) and (3.10) we obtain that

E|x(T ;φ,G, v)− z| ≤ E|yw1(T )− z|+ E
∣∣W (T )φ0 −W (δ)W (T − δ)φ0

∣∣(3.11)

+ E
∣∣ ∫ 0

−h
UT (s)φ1(s)ds−W (δ)

∫ 0

−h
UT−δ(s)φ

1(s)ds
∣∣

+ E
∣∣ ∫ T

0
W (T − s)f(s, (xu)s)dW −W (δ)

∫ T−δ

0
W (T − δ − s)f(s, (xu)s)dW

∣∣
+ E

∣∣ ∫ T−δ

0
W (T − s)Bu(s)ds−W (δ)

∫ T−δ

0
W (T − δ − s)Bu(s)ds

∣∣
≤ ε

8
+ I + II + III + IV.

From (2.16) it follows that

sup
0≤t≤T

E|W (t)φ0| ≤ ||W (·)φ0||Z(T ) ≤ C1

(
1 + E(|φ0|2)

)
,
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and so

I = E
∣∣W (T )φ0 −W (δ)W (T − δ)φ0

∣∣(3.12)

≤ ||I −W (δ)||L(H)E|W (T )φ0|+ ||W (T )−W (T − δ)||L(H)|W (δ)φ0|

≤ 2δC0C1

(
1 + E(|φ0|2)

)
<
ε

8
.

With aid of Lemmas 2.2 and 2.3, and (3.4) we have

II =E
∣∣ ∫ 0

−h
UT (s)φ1(s)ds−W (δ)

∫ 0

−h
UT−δ(s)φ

1(s)ds
∣∣(3.13)

≤E
∣∣(I −W (δ))

∫ 0

−h
UT (s)φ1(s)ds

∣∣+ E
∣∣W (δ)

∫ 0

−h
(UT (s)− UT−δ(s))φ1(s)ds

∣∣
≤δC0||U||L(L2(−h,0;V ))||φ1||Π + C0CT δ

(κ+1)/2||φ1||Π <
ε

4
.

By (2.16) and (3.10), we get

||xw1 ||M2(T−δ,T ;V ) ≤ ||xv||M2(0,T ;V )

(3.14)

≤C1

{
1 + E(|φ0|2) + ||φ1||Π + CB||u||L2(0,T ;H) + CBLB

(
C0||xu||Z(T ) + γ +

ε

8

)}
.

Hence, with aid of Assumption (F) and (3.14) and by using Hólder
inequality, we have

E
∣∣ ∫ T

T−δ
W (T − s)f(s, (xw1)s)dω

∣∣ ≤ C0

√
δTr(Q)||f(s, (xw1)s)||M2(0,T ;H)

(3.15)

≤ C0

√
δTr(Q)Lf (r)(||(xw1)s||Π + 1)

≤ C0

√
δTr(Q)Lf (r)(||φ1||Π + ||xw1 ||M2(0,T1;V ) + 1) ≤

√
δ
(
M0 +

εM1

8

)
,
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where M0 and M1 are the constants of (3.5) and (3.6), respectively.
Thus, from (2.7), (2.8), (3.3), (3.4), and (3.15) it follows that

III = E
∣∣W (δ)

∫ T−δ

0
W (T − δ − s)f(s, (xu)s)dω −

∫ T

0
W (T − s)f(s, (xv)s)dω

∣∣(3.16)

≤E
∣∣(W (δ)− I)

∫ T−δ

0
W (T − δ − s)f(s, (xu)s)dω

∣∣
+ E

∣∣ ∫ T−δ

0

(
W (T − δ − s)−W (T − s)

)
f(s, (xu)s)dω

∣∣
+ E

∣∣ ∫ T

T−δ
W (T − s)f(s, (xw1)s)dω

∣∣
≤(C0 + 1)C0δ

√
TTr(Q)Lf (r)(||φ1||Π + ||xu||Z(T ) + 1) +

√
δ
(
M0 +

εM1

8

)
<
ε

8
+
ε

8
≤ ε

4
,

and

IV =E
∣∣W (δ)

∫ T−δ

0
W (T − δ − s)Bu(s)ds−

∫ T−δ

0
W (T − s)Bu(s)ds

∣∣(3.17)

≤E
∣∣(W (δ)− I)

∫ T−δ

0
W (T − δ − s)Bu(s)ds

∣∣
+ E

∣∣ ∫ T−δ

0

(
W (T − δ − s)−W (T − s)

)
Bu(s)ds

∣∣
≤(C0 + 1)C0CBδ

√
T ||u||L2(0,T ;U) <

ε

8
.

Therefore, by (3.12)-(3.16), we have

||x(T ;φ,G, v)− z|| < ε,

that is, z ∈ RT (φ) and the proof is complete.
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