• Title/Summary/Keyword: umbilic

Search Result 16, Processing Time 0.554 seconds

ON A TOTALLY UMBILIC HYPERSURFACE OF FIRST ORDER

  • Kim, Jaeman
    • Honam Mathematical Journal
    • /
    • v.39 no.4
    • /
    • pp.465-473
    • /
    • 2017
  • In this paper, we define a totally umbilic hypersurface of first order and show that a totally umbilic hypersurface of first order in an Einstein manifold has a parallel second fundamental form. Furthermore we prove that a complete, simply connected and totally umbilic hypersurface of first order in a space of constant curvature is a Riemannian product of Einstein manifolds. Finally we show a proper example which is a totally umbilic hypersurface of first order but not a totally umbilic hypersurface.

TOTALLY UMBILIC LORENTZIAN SUBMANIFOLDS

  • Ahn, Seong-Soo;Kim, Dong-Soo;Kim, Young-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.507-512
    • /
    • 1996
  • A totally umbilic submanifold of a pseudo-Riemanian manifold is a submanifold whose first fundamental form and second fundamental form are proportiona. An ordinary hypersphere $S^n(r)$ of an affine (n + 1)-space of the Euclidean space $E^m$ is the best known example of totally umbilic submanifolds of $E^m$.

  • PDF

TOTALLY UMBILIC SPACELIKE SURFACES OF TYPE (I) IN $L^n$

  • Hong, Seong-Kowan
    • The Pure and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.417-425
    • /
    • 2009
  • In this paper we show that spheres in $E^3{\subset}L^n$ and pseudohyperbolic spaces in $L^3{\subset}L^n$ are the only totally umbilic spacelike surfaces of type (I) in $L^n$.

  • PDF

CONFORMAL VECTOR FIELDS AND TOTALLY UMBILIC HYPERSURFACES

  • Kim, Dong-Soo;Kim, Seon-Bu;Kim, Young-Ho;Park, Seong-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.671-680
    • /
    • 2002
  • In this article, we show that if a semi-Riemannian space form carries a conformal vector field V of which the tangential part $V^T$ on a connected hypersurface $M^N$ ecomes a conformal vector field and the normal part $V^N on $M^N$ does not vanish identically, then $M^N$ is totally umbilic. Furthermore, we give a complete description of conformal vector fields on semi-Riemannian space forms.

Totally umbilic lorentzian surfaces embedded in $L^n$

  • Hong, Seong-Kowan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.9-17
    • /
    • 1997
  • Define $\bar{g}{\upsilon, \omega) = -\upsilon_1\omega_1 + \cdots + \upsilon_n\omega_n$ for $\upsilon, \omega in R^n$. $R^n$ together with this metric is called the Lorentzian n-space, denoted by $L^n$, and $R^n$ together with the Euclidean metric is called the Euclidean n-space, denoted by $E^n$. A Lorentzian surface in $L^n$ means an orientable connected 2-dimensional Lorentzian submanifold of $L^n$ equipped with the induced Lorentzian metrix g from $\bar{g}$.

  • PDF

UNIQUENESS OF FAMILIES OF MINIMAL SURFACES IN ℝ3

  • Lee, Eunjoo
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1459-1468
    • /
    • 2018
  • We show that an umbilic-free minimal surface in ${\mathbb{R}}^3$ belongs to the associate family of the catenoid if and only if the geodesic curvatures of its lines of curvature have a constant ratio. As a corollary, the helicoid is shown to be the unique umbilic-free minimal surface whose lines of curvature have the same geodesic curvature. A similar characterization of the deformation family of minimal surfaces with planar lines of curvature is also given.

LIGHTLIKE REAL HYPERSURFACES WITH TOTALLY UMBILICAL SCREEN DISTRIBUTIONS

  • Jin, Dae-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.443-450
    • /
    • 2010
  • In this paper, we study the geometry of lightlike real hyper-surfaces of an indefinite Kaehler manifold. The main result is a characterization theorem for lightlike real hypersurfaces M of an indefinite complex space form $\bar{M}(c)$ such that the screen distribution is totally umbilic.