A CHARACTERIZATION OF TOTALLY UMBILIC SUBMANIFOLDS

DONG-SOO KIM AND SEON-BU KIM

1. Introduction

A totally umbilic submanifold M^n of a Riemannian manifold \overline{M}^{n+k} is a submanifold whose first fundamental form and second fundamental form are proportional. An ordinary hypersphere $S^n(r)$ of an affine (n+1)-space of \mathbb{R}^{n+k} is the best known example of totally umbilic submanifolds of \mathbb{R}^{n+k} . From the point of views in differential geometry, the totally umbilic submanifolds are the simplest submanifolds next to totally geodesic submanifolds. The totally umbilic submanifolds of a space form $\overline{M}^{n+k}(c)$ with constant sectional curvature c are well known ([2] p. 129). Moreover the totally umbilic submanifolds of a locally symmetric space were classified in a series of papers by B.Y. Chen (see [1] for the references).

In this paper we give a characterization of totally umbilic submanifolds M^n of Riemannian manifold \overline{M}^{n+k} and a characterization of totally umbilic spacelike submanifolds M^n of a semi-Riemannian manifold \overline{M}_k^{n+k} of index k. In proving our results, we have used the method in [3].

2. Preliminaries

Let M^n be a submanifold of a Riemannian manifolds \overline{M}^{n+k} . We denote by σ , H and A_V the second fundamental form, the mean curvature vector field $(1/n)\operatorname{tr}(\sigma)$ and the shape operator with respect to a normal vector V. If we denote the covariant differentiation of the Riemannian

Received December 21, 1992.

This work was partially supported by the Mathematical Research Center, Chonnam National University.

manifold M^n and \overline{M}^{n+k} by ∇ and $\overline{\nabla}$ respectively, then they are related by

(2.1)
$$\overline{\nabla}_X Y = \nabla_X Y + \sigma(X, Y).$$

And the second fundamental form and the shape operator are related by

(2.2)
$$\langle \sigma(X,Y), V \rangle = \langle A_V(X), Y \rangle.$$

Given a local orthonormal frame $\{e_1, \ldots, e_{n+k}\}$ such that e_1, \ldots, e_n are tangent to M^n and e_{n+1}, \ldots, e_{n+k} are normal to M^n , we write $A_{\alpha} = A_{e_{\alpha}}(\alpha = n+1, \ldots, n+k)$. In the sequel, i and j run over the range $\{1, \ldots, n\}$ and α and β run over the range $\{n+1, \ldots, n+k\}$. If we denote curvature tensors for the connections ∇ , $\overline{\nabla}$ by R, \overline{R} respectively, then we have the following structure equation of Gauss:

(2.3)
$$\langle R(X,Y)Z,W\rangle = \langle \bar{R}(X,Y)Z,W\rangle + \langle \sigma(X,W),\sigma(Y,Z)\rangle - \langle \sigma(X,Z),\sigma(Y,W)\rangle.$$

The Ricci curvature tensor of M^n and \overline{M}^{n+k} are denoted by Ric and \overline{Ric} respectively. By the equations (2.2), (2.3), we have

(2.4)
$$Ric(X,Y) = \overline{Ric}|_{TM}(X,Y) + \langle \sigma(X,Y), nH \rangle - \sum_{\alpha} \langle A_{\alpha}(X), A_{\alpha}(Y) \rangle,$$

where we denote $\sum_{i=1}^{n} \langle \bar{R}(e_i, X)Y, e_i \rangle$ by $\overline{Ric}|_{TM}(X, Y)$.

3. Main Theorems

Recall that totally umbilic submanifolds are submanifolds satisfying

(3.1)
$$\sigma(X,Y) = \langle X,Y \rangle H$$

for all $X, Y \in TM$.

PROPOSITION 3.1. If M^n is a totally umbilic submanifold of \overline{M}^{n+k} , then for any unit tangent vector X to M^n ,

(3.2)
$$Ric(X,X) = \overline{Ric}|_{TM}(X,X) + (n-1)|\sigma(X,X)|^2.$$

Proof. Let M^n be a totally umbilic submanifold of \overline{M}^{n+k} . Then by the equations (2.2), (2.4) and (3.1), we have

$$\begin{aligned} Ric(X,X) - \overline{Ric}|_{TM}(X,X) &= \langle \sigma(X,X), nH \rangle \\ &- \sum_{\alpha} \langle A_{\alpha}(X), A_{\alpha}(X) \rangle \\ &= n|X|^2|H|^2 - |X|^2|H|^2 \\ &= (n-1)|X|^2|H|^2 \\ &= (n-1)|\sigma(X,X)|^2, \end{aligned}$$

where the last equality follows from the fact that X is unit.

We will prove a converse of the above proposition as follows:

THEOREM 3.2. Let M^n be a submanifold of \overline{M}^{n+k} which satisfies

(3.3)
$$Ric(X,X) \ge \overline{Ric}|_{TM}(X,X) + (n-1)|\sigma(X,X)|^2$$

for all unit tangent vector X. Then M^n is a totally umbilic submanifold of \overline{M}^{n+k} .

Before proving the theorem, we give a lemma.

LEMMA 3.3. Let M^n be a submanifold of \overline{M}^{n+k} and p be a point in M^n . Then we have for all unit tangent vector $X \in T_pM$

$$(3.4) |\sigma(X,X)|^2 \leq \sum_{\alpha} |A_{\alpha}(X)|^2.$$

And equality holds for all unit tangent $X \in T_pM$ if and only if p is an umbilic point.

Proof. By the equation (2.2), we have

$$|\sigma(X,X)|^2 = \sum_{\alpha} \langle \sigma(X,X), e_{\alpha} \rangle^2 = \sum_{\alpha} \langle A_{\alpha}(X), X \rangle^2.$$

Hence the inequality (3.4) follows. And equality holds for all unit vector $X \in T_pM$ if and only if every tangent vector X at p is an eigenvector of A_{α} for any α . This means that p is an umbilic point.

Proof of the Theorem 3.2. Fix a point p in M^n and we denote $|\sigma(X,X)|^2$ by h(X). Then h can be considered as a function from U_pM into R, where U_pM is the unit tangent sphere in T_pM and identified with S^{n-1} in \mathbb{R}^n . Let Y be a unit tangent vector of S^{n-1} at X, then a straightforward calculation as in [4] shows that at X we have

$$(3.5) Yh = 4\langle \sigma(X,Y), \sigma(X,X) \rangle,$$

$$(3.6) YYh = 4\{\langle \sigma(X,X), \sigma(Y,Y) \rangle - |\sigma(X,X)|^2 + 2|\sigma(X,Y)|^2\}.$$

Let $\{e_1, \dots, e_{n-1}\}$ be an orthonormal basis of $T_X S^{n-1}$. Then $\{e_1, \dots, e_{n-1}, e_n = X\}$ forms an orthonormal basis of $T_p M$ and by (3.6)

$$\frac{1}{4}e_ie_ih(X) = \langle \sigma(X,X), \sigma(e_i,e_i)\rangle - |\sigma(X,X)|^2 + 2|\sigma(X,e_i)|^2.$$

Hence we have

$$\frac{1}{4}\Delta_{S^{n-1}}h(X) = \frac{1}{4}\sum_{i=1}^{n-1}e_{i}e_{i}h(X)
= \langle \sigma(X,X), nH - \sigma(X,X)\rangle - (n-1)|\sigma(X,X)|^{2}
+ 2\sum_{i=1}^{n-1}|\sigma(X,e_{i})|^{2}.$$

Since $\sum_{i=1}^{n-1} |\sigma(X, e_i)|^2 = \sum_{\alpha} |A_{\alpha}(X)|^2 - |\sigma(X, X)|^2$, we have

$$\frac{1}{4}\Delta_{S^{n-1}}h(X)=2\sum_{\alpha}|A_{\alpha}(X)|^2-(n+2)|\sigma(X,X)|^2+\langle\sigma(X,X),nH\rangle.$$

Equation (2.4) gives a formula for the last term:

$$\langle \sigma(X,X), nH \rangle = Ric(X,X) - \overline{Ric}|_{TM}(X,X) + \sum_{\alpha} |A_{\alpha}(X)|^{2}.$$

Thus we have

$$\begin{split} \frac{1}{4}\Delta_{S^{n-1}}h(X) &= \{Ric(X,X) - \overline{Ric}|_{TM}(X,X) - (n-1)|\sigma(X,X)|^2\} \\ &+ 3\{\sum_{\alpha}|A_{\alpha}(X)|^2 - |\sigma(X,X)|^2\}. \end{split}$$

Since we have

$$\int_{S^{n-1}} \Delta_{S^{n-1}} h(X) = 0,$$

the assumption (3.3) of the theorem implies that the second parenthesis in (3.7) must vanish for all X in T_pM . Hence by lemma 3.4 p is an umbilic point of M^n . Since p is an arbitrary point of M^n , we see that M^n is totally umbilic.

If \overline{M}^{n+k} is the space form $\overline{M}^{n+k}(c)$ with constant sectional curvature c, then

$$\overline{Ric}|_{TM}(X,X) = (n-1)c|X|^2.$$

Thus we have

COROLLARY 3.4. Let M^n be a submanifold of a space form $\overline{M}^{n+k}(c)$ which satisfies

(3.8)
$$Ric(X,X) \ge (n-1)\{c+|\sigma(X,X)|^2\}$$

for all unit tangent vector X of M^n . Then M^n is totally umbilic.

If \overline{M}_k^{n+k} is a semi-Riemannian manifold with index k and if M^n is a spacelike submanifold of \overline{M}_k^{n+k} , then we may prove the analogous theorems, which we state without proofs. We may find the basic definitions in [5].

PROPOSITION 3.5. If M^n is a totally umbilic spacelike submanifold of a semi-Riemannian manifold \overline{M}_k^{n+k} , then for any unit tangent vector X to M^n ,

$$Ric(X,X) = \overline{Ric}|_{TM}(X,X) + (n-1)|\sigma(X,X)|^2.$$

THEOREM 3.6. If M^n satisfies

$$Ric(X,X) \leq \overline{Ric}|_{TM}(X,X) + (n-1)|\sigma(X,X)|^2$$

for all unit tangent vector X, then M^n is a totally umbilic submanifold of \overline{M}_k^{n+k} .

COROLLARY 3.7. Let M^n be a spacelike submanifold of a semi-Riemannian manifold $\overline{M}_k^{n+k}(c)$ with index k and of constant sectional curvature c. If M^n satisfies

$$Ric(X,X) \le (n-1)\{c + |\sigma(X,X)|^2\}$$

for all unit tangent vector X of M^n , then M^n is totally umbilic.

REMARK. Since $\sigma(X, X)$ is orthogonal to M^n , $|\sigma(X, X)|^2 = \langle \sigma(X, X), \sigma(X, X) \rangle$ is nonpositive. And note that the inequality is reversed.

References

- 1. B.-Y. Chen, Geometry of submanifolds and its applications, Science University of Tokyo, Tokyo, 1981.
- Total mean curvature and submanifolds of finite type, World Scientific, Singapore, 1984.
- S. Deshmukh, A note on hypersurfaces in a Euclidean space, Geom. Dedicata 34 (1990), 101-103.
- 4. B. O'neill, Isotropic and Kähler Immersions, Canad. J. Math. 17 (1965), 907-915.
- 5. _____, Semi-Riemannian Geometry with applications to Relativity, Academic Press, New York, 1983.

Department of Mathematics College of Natural Sciences Chonnam National University Kwangju, 500-757, Korea