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CONFORMAL VECTOR FIELDS AND
TOTALLY UMBILIC HYPERSURFACES

Dong-Soo KM, SEoN-Bu KiMm,
Young Ho KIM AND SEONG-HEE PARK

ABSTRACT. In this article, we show that if a semi-Riemannian
space form carries a conformal vector field V' of which the tangen-
tial part V7T on a connected hypersurface M™ becomes a conformal
vector field and the normal part VN on M™ does not vanish identi-
cally, then M™ is totally umbilic. Furthermore, we give a complete
description of conformal vector fields on semi-Riemannian space
forms.

1. Introduction

Conformal mappings, conformal symmetries and conformal vector
fields are of great importance in general relativity, as is well known
since the early 1920’s ([7, 15]). A vector field V satistying £vg = 209¢
on a semi-Riemannian manifold (M, g) is called an infinitesimal confor-
mal transformation or a conformal vector field on M, where £ denotes
the Lie derivative on M and o is a smooth function.

A totally umbilic submanifold of a semi-Riemannian manifold is the
one whose first fundamental form and second fundamental form are pro-
portional. An ordinary hypersphere S™(r) of an affine (n + 1)-space of
the Fuclidean space R™ is one of the best known example of totally um-
bilic submanifolds of R™. Totally umbilic submanifolds of a Riemannian
space form with constant sectional curvature are well known ([4, 5]). On
the other hand, there are four kinds of totally umbilic submanifolds in
semi-Euclidean space (See, for example, [1]).
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In [17], Remark 1, R. Sharma and K. L. Duggal observed that if
(M™,g) is a semi-Riemannian totally umbilic submanifold of a semi-
Riemannian manifold (M™,g)(that is, the induced metric g = gl
is nondegenerate), then for any conformal vector field V on M™, the
tangential part V7 of V on M" reduces to a conformal vector field on
M™ (See also Proposition 2.). Thus it would be worth considering the
converse.

In this article we prove the converse of the above remark for a semi-
Riemannian hypersurface of a semi-Riemannian space form M, ,?H(é)
with constant sectional curvature ¢ in the following way.

THEOREM 1. Let (M"™,g),n > 2, be a connected semi-Riemanniarn
hypersurface of a semi-Riemannian space form (M;"'(€),g). Suppose
that M]*"'(¢) carries a conformal vector field V of which the tangential
part VT on M™ becomes a conformal vector field. Then one of the
following holds:

(1) (M™,g) is totally umbilic,

(ii) the restriction of V. to M™ reduces to a tangent vector field on
M™.

In general, in case the hypersurface (M™,g) is lightlike (that is, the
metric g is degenerate), we do not have a shape operator S satisfying
9(SX,Y) = g(X,SY). Furthermore, Remark 1 in [17] does not hold in
general for lightlike hypersurfaces (See [6]; p.118). Henceforth all of hy-
persurfaces are assumed to be semi-Riemannian unless stated otherwise.

To prove Theorem 1, we derive a useful formula (2.13) for the nor-
mal part V¥ of V on totally umbilic hypersurfaces of M"'(¢), which
is also used to prove Theorem 3. Theorem 3 characterizes conformal
vector fields on totally umbilic hypersurface M™ of M ,?H (¢) in terms of
conformal vector fields on the ambient space form M *'(e).

In Section 3, using Theorem 3, we give a complete description of
conformal vector fields on semi-Riemannian space forms (cf. [18]; pp.
336-337).

2. Main theorems

On a semi-Riemannian manifold (M",g) a vector field V is called
conformal if it preserves the conformal class of the metric:

Lyvg =209
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for some function o. Recall that by definition £y ¢(X,Y) = g(VxV,Y)+
9(X,Vy V) for arbitrary tangent vectors X,Y where V denotes the Levi-
civita connection on M™. The function o is necessarily ;ll-div(V), where
div(V') denotes the divergence of the vector field V.

PROPOSITION 2. ([17]; Remark 1) Let (M™,g) be a totally umbilic
submanifold of a semi-Riemannian manifold (M™,g). If V is a confor-
mal vector field on M™, then the tangential part VT of V on M™ is a
conformal vector field on M™.

Proof. Suppose that V satisfies £1§ = 205 on M™. Let VT and V'V
denote the tangential and normal part of V on M™, respectively. Then
since for all X, Y € TM™

Lvg(X,Y) =g(VxV,Y) + (X, VyV)
= g(VxVT.Y) + (X, Vy V) +g(Vx VY, Y) +3(X,Vy V),

we have
Lyvg(X,Y) = Lyrg(X,Y) - 2§(h(X,Y), V),

where h denotes the second fundamental form. Hence from the hypoth-
esis we obtain that
'QVTg(Xa Y) - £Vg(Xa Y) + 2§(V, H)g(X: Y)
— 2o+ gV, H)}g(X, ¥),

where H denotes the mean curvature vector field. This completes the
proof. g

Now we prove Theorem 1 as follows:

_Proof of Theorem 1. Suppose that V' and VT satisfy £1§ = 205 on
(M,?“(E),g) and £yrg = 27g on M", respectively. From the proof of
the above proposition, we obtain

(21)  FVAXY)) = (r—o)g(X,¥), XY eTM",
where h denotes the second fundamental form. We let U = {p €

M|V (p) # 0}. From now on, we use {-,-) for the metrics § and g
unless they are confused. Then (2.1) shows that U is totally umbilic in



674 Dong-Soo Kim, Seon-Bu Kim, Young Ho Kim and Seong-Hee Park

(r—a)

M1 (2) with mean curvature vector field H = ey & where ¢ is a unit
normal vector field on U. By the Codazzi equation, we have

(2.2) H=a;§, A¢=c¢ea;l

for some constant a; on each connected component U; of U where € =
(€,&) = £1. Hence, the Gauss equation shows that each U; has constant
sectional curvature ¢; = ¢ + €a?. From (2.2) and the hypothesis we
obtain

(2.3) V(V,8) = —{V¢V +ea;V}T,

where V(V,¢&) is the gradient vector of (V,£) on M™. Furthermore, on
each U;, by differentiating both sides of (2.3), we have

—(VxV(V,§),Y)
(2.4) = {<vxﬁ§V,Y> + Eai<vxv, Y)}
+ {ea;o + ea?(V,OOHX,Y), X,Y €e TM™.

Since M;'*!(¢) has constant sectional curvature ¢, for X,Y € TM™"
the Riemann curvature tensor R of M;*!(¢) satisfies

(2.5) (R(X,OV.Y) = &V, €)(X, V).

Note that we can extend X,Y locally to My (€) so that
(2.6) VeX =VY =0.

Hence on U; we have from (2.2) and (2.5)

<vxﬁgv, Y> + eq <€XV, Y)

2.7 _
@.7) = (V.VXVY) + eV, E(X,Y), XY eTM"

Since the left hand side of (2.4) and the second term of right hand side
of (2.4) are symmetric in X,Y € TM", respectively, we easily see that
(VeVxV,Y) is symmetric in X, Y € TM™ on each on U;. Thus we have
from (2.6)
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Using the conformality of V, from (2.8) we obtain
(2.9) (VeVxVY) =€(o)(X,Y), X, YeTM"
On the other hand, equations (2.7) and (2.9) imply that for X,Y € TM"

(VxVeV,Y)

(2.10) = (o)X, Y) — eai(VxV,Y) + &V, ENX,Y).

Hence (2.4) gives
(2.11) (VxV(V,6),Y) = —{c(V, &) +£(0) + eaio (X, Y),

on each U; where X,Y € TM" and c; denotes }he sectional curvature
¢ + ea? of U;. Since V satisfies Ly g = 207 on M,?H(E), o satisfies the
following ([19] or [13]; Corollary 2.2):

(2.12) VxVo=—-éoX, XeTM.

This together with (2.2) implies that (o) + €a;o is a constant b; on each
U;. Thus from (2.11) we obtain on each U;

(213)  VxV(V,&) = —{c(V,&) +b:}X, X eTM",

which implies that V(V, £) is a closed conformal vector field on each Us,
and hence on the closure of U.

If the complement of U has nonempty interior, then V(V,§) is a
trivial closed conformal vector field on it. Thus, by continuity, V(V, &)
is a closed conformal vector field on M™. Therefore Proposition 2.3 in
[12] shows that either U is dense in M™, or V¥ =0 identically on M™.
This completes the proof. 0

Now we characterize conformal vector fields on totally umbilic hyper-
surface of semi-Riemannian space form M ,?H(E) as follows:

THEOREM 3. Let M™ be a connected totally umbilic hypersurface
of a semi-Riemannian space form M} (¢). Then any conformal vector
field on M™ can be obtained as the tangential part VT of a conformal
vector field V on M }?H(E). Furthermore, for any conformal vector field
W on M" there exists a unique conformal vector field V on My+!(e)

which satisfies V|y» = W.
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Proof. Let C(M) and C(M) denote the space of conformal vector
fields on M'*!(€) and on M™ respectively. Define a map ¢ : C(M) —
C(M) by ¢¥(V) = VT. Then Proposition 2 shows that 1) is a well-defined
linear map.

Suppose that V € Kery. Then we have V = f€ on M", where f =
e(V, €), £ is a unit normal vector field on M", and € denotes (§,&) = £1.
Since M™ is totally umbilic, (2.13) shows that f satisfies

(2.14) VxVf=—(cf+b)X, XeTM,

where ¢ denotes the constant sectional curvature of M™ and b is a con-
stant.

We denote by GC(M™) the space of all functions f on M" satisfying
(2.14) for some constant b € R. Then GC(M™") is of (n + 2)-dimensional
([18]; pp.336-337). If we define ¢ : keryy — GC(M™) by o(V) = €(V,§),
then (2.14) shows that ¢ is a well-defined linear map. From the fact that
the codimension of the zero set of a nontrivial conformal vector field is
greater than 1, we see that ¢ is injective. Hence we have

(2.15) dimKery < dimGC(M) =n + 2.

Since dimC (M) = T2 anq dimC(M) = CHIEE (1)), by
counting dimensions, we see that the inequality in (2.15) becomes an
equality, and dimImiy = dimC(M), which implies that ¢ is bijective
and %) is surjective.

For any fixed W € C(M) we choose a Vy € C(M) such that (V) =
W. If we denote by f¢ the normal part ViV of V, on M™, then (2.13)
shows that f and —f belong to GC(M"). Thus it follows from the
bijectivity of ¢ that there exists a unique V; in Kery which satisfies
Vijan = —f€. Therefore V. = Vj + Vi is the desired conformal vector
field in C'(M). This completes the proof. O

3. Conformal vector fields on space forms

In this section, first of all, we give a complete description of conformal
vector fields on semi-Euclidean space RZ“, which might be well-known
but we could not find a reference for it (cf. [9]; pp. 25-26). Then
theorem 3 gives a complete description of conformal vector fields on
non-flat semi-Riemannian space forms (cf. [18]; pp. 336-337).
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Consider the semi-Euclidean space (R? ™, §) with metric tensor ds? =
k

Z?:ll Eid.’E?, where €] = 0 = € = _176143—1—1 =t = €p41 = 1. If
V=WV, -+ ,Vhs1) is a conformal vector field on RZ“ which satisfies
(3.1) Lvg =203,

then o satisfies VxVo = 0 ([19] or [13]; Corollary 2.2), so that we have
for some constants aj, -+ ,an41,b

n+1

(3.2) o(1, 1 Tns1) = > a;z; +b.
j=1

From (3.1) and (3.2) we obtain the following:

(3.3) Vij=0, je{1,2,---,n+1},

(3.4) €;Vik +exVe; =0 for distinet j,ke{1,2,--- ,n+1},

where Vj ;. denotes the k-th partial derivative % of V;. If we also denote
by V; i the I-th partial derivative of Vj x, then (3.4) implies that for all
distinct j,k,0 € {1,2,--- ,n+ 1}

Vike = —(€jex) iy = (—€jen)(—eree) Ve i
= (—ejer)(—enee)(—€v€;)Vike = —Vj ke

so that we have

(3.5) Vike =0 for distinet j,k,£e€{l,---,n+1}
From (3.2), (3.3) and (3.4) we also have the following:

(3.6) Vikj=Vije=ar, jike{l, - ,n+1}

Vike = (—€jex) Vi jr = —€€x Vi kj

3.7
(3.7) = —¢€jepa; for distinet j ke {1,--- ,n+1}.

Hence (3.5) together with (3.6) and (3.7) implies for distinct j,k €
{1,-- ,n+1}

(3.8) Vik = arxj — €jepa;cr + by, bjx € R.
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Furthermore, (3.4) and (3.8) show that b, satisfies
(3.9) €;bjk + €xbp; =0 for distinet g,k € {1,--- ,n+1}.

Thus from (3.3) and (3.8) we have for some constants c;, j € {1,2,---
n+ 1}

1 1
(3.10) Vi(@1, -+ s Tny1) = 025 — €% (x,z) + Zbﬁxi + —c¢j,

i£j 2
or, equivalently we have
1 _ 1
(3.11) V(z1, "+ yTns1) =0T — 5(m,m)a+Bzz+§C,
where @ = (€101, ,€nt1@n+1), C = (1,7 ,cny1), 0 is given by

(3.2) and B denotes an (n+ 1) X (n+ 1) matrix (b;;) which satisfies (3.9)
and b;; = 0. Note that Bz + 5C is the Killing part of V on R (14}
p. 253).

Now consider a non-flat semi-Riemannian space form M™(e) with
constant sectional curvature e = 41 which is given by as a totally umbilic
hypersurface of RZ™" for some suitable k;

M"(€) = {x € R} |{z,z) = €}.

Then Theorem 3 shows that the space C(M) of conformal vector fields
on M"(¢€) is given by

(3.12) C(M) = {V|u|V € C(RFTY), (V,z) =00n M"(e)}.

Hence from (3.11) we see that on M"(¢)

n+1

(3.13) (V,z) = % (a; + €€jcj)x; + be =0,
j=1

which shows that

(3.14) a=—eC, b=0.

Thus (3.11), (3.12) and (3.14) imply that every element of C'(M) is of
the following form:

(3.15) Vimn = {C — €(C,z)x + Bx}|pn,
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where C' = (c1," -+ , ¢u41), and B is an (n+1) X (n+1) matrix (b;;) which
satisfies €;b;,+€rbr; =0 for all 5,k € {1,--+ ,n+1}. The restriction of
C —€(C,z)x to M™ is nothing but the tangential part C7 of a constant
vector C € RZH, which is also the gradient vector field Voc(z) of a
linear function o¢(x) = (C,z) on M"(¢) ([9, 10]). And Bz|p- is the
Killing part of V|~ on M"™(e).

From (2.1), (3.1), (3.2), (3.12) and (3.14) we also see that Ly|pnd =
27g on M"(¢), where 7 is the restriction to M"(¢) of a linear function
o =—¢(C,z) on B! (cf. Lemma in [3)).
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