CONFORMAL VECTOR FIELDS AND TOTALLY UMBILIC HYPERSURFACES

Dong-Soo Kim, Seon-Bu Kim, Young Ho Kim and Seong-Hee Park

ABSTRACT. In this article, we show that if a semi-Riemannian space form carries a conformal vector field V of which the tangential part V^T on a connected hypersurface M^n becomes a conformal vector field and the normal part V^N on M^n does not vanish identically, then M^n is totally umbilic. Furthermore, we give a complete description of conformal vector fields on semi-Riemannian space forms.

1. Introduction

Conformal mappings, conformal symmetries and conformal vector fields are of great importance in general relativity, as is well known since the early 1920's ([7, 15]). A vector field V satisfying $\mathfrak{L}_V g = 2\sigma g$ on a semi-Riemannian manifold (M,g) is called an infinitesimal conformal transformation or a conformal vector field on M, where $\mathfrak L$ denotes the Lie derivative on M and σ is a smooth function.

A totally umbilic submanifold of a semi-Riemannian manifold is the one whose first fundamental form and second fundamental form are proportional. An ordinary hypersphere $S^n(r)$ of an affine (n+1)-space of the Euclidean space R^m is one of the best known example of totally umbilic submanifolds of R^m . Totally umbilic submanifolds of a Riemannian space form with constant sectional curvature are well known ([4, 5]). On the other hand, there are four kinds of totally umbilic submanifolds in semi-Euclidean space (See, for example, [1]).

Received April 22, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 53B25, 53B30.

Key words and phrases: totally umbilic hypersurface, space form, conformal vector field.

This work was supported by the Brain Korea 21 Project.

In [17], Remark 1, R. Sharma and K. L. Duggal observed that if (M^n,g) is a semi-Riemannian totally umbilic submanifold of a semi-Riemannian manifold (\bar{M}^m,\bar{g}) (that is, the induced metric $g=\bar{g}|_{M^n}$ is nondegenerate), then for any conformal vector field V on \bar{M}^m , the tangential part V^T of V on M^n reduces to a conformal vector field on M^n (See also Proposition 2.). Thus it would be worth considering the converse.

In this article we prove the converse of the above remark for a semi-Riemannian hypersurface of a semi-Riemannian space form $\bar{M}_k^{n+1}(\bar{c})$ with constant sectional curvature \bar{c} in the following way.

THEOREM 1. Let $(M^n,g), n \geq 2$, be a connected semi-Riemannian hypersurface of a semi-Riemannian space form $(\bar{M}_k^{n+1}(\bar{c}), \bar{g})$. Suppose that $\bar{M}_k^{n+1}(\bar{c})$ carries a conformal vector field V of which the tangential part V^T on M^n becomes a conformal vector field. Then one of the following holds:

- (i) (M^n, g) is totally umbilic,
- (ii) the restriction of V to M^n reduces to a tangent vector field on M^n .

In general, in case the hypersurface (M^n, g) is lightlike (that is, the metric g is degenerate), we do not have a shape operator S satisfying g(SX, Y) = g(X, SY). Furthermore, Remark 1 in [17] does not hold in general for lightlike hypersurfaces (See [6]; p.118). Henceforth all of hypersurfaces are assumed to be semi-Riemannian unless stated otherwise.

To prove Theorem 1, we derive a useful formula (2.13) for the normal part V^N of V on totally umbilic hypersurfaces of $\bar{M}_k^{n+1}(\bar{c})$, which is also used to prove Theorem 3. Theorem 3 characterizes conformal vector fields on totally umbilic hypersurface M^n of $\bar{M}_k^{n+1}(\bar{c})$ in terms of conformal vector fields on the ambient space form $\bar{M}_k^{n+1}(\bar{c})$.

In Section 3, using Theorem 3, we give a complete description of conformal vector fields on semi-Riemannian space forms (cf. [18]; pp. 336–337).

2. Main theorems

On a semi-Riemannian manifold (M^n, g) a vector field V is called conformal if it preserves the conformal class of the metric:

$$\mathfrak{L}_V g = 2\sigma g$$

for some function σ . Recall that by definition $\mathfrak{L}_V g(X,Y) = g(\nabla_X V,Y) + g(X,\nabla_Y V)$ for arbitrary tangent vectors X,Y where ∇ denotes the Levicivita connection on M^n . The function σ is necessarily $\frac{1}{n}div(V)$, where div(V) denotes the divergence of the vector field V.

PROPOSITION 2. ([17]; Remark 1) Let (M^n, g) be a totally umbilic submanifold of a semi-Riemannian manifold (\bar{M}^m, \bar{g}) . If V is a conformal vector field on \bar{M}^m , then the tangential part V^T of V on M^n is a conformal vector field on M^n .

Proof. Suppose that V satisfies $\mathfrak{L}_V \bar{g} = 2\sigma \bar{g}$ on \bar{M}^m . Let V^T and V^N denote the tangential and normal part of V on M^n , respectively. Then since for all $X,Y\in TM^n$

$$\mathcal{L}_V \bar{g}(X,Y) = \bar{g}(\bar{\nabla}_X V, Y) + \bar{g}(X, \bar{\nabla}_Y V)$$

= $\bar{g}(\bar{\nabla}_X V^T, Y) + \bar{g}(X, \bar{\nabla}_Y V^T) + \bar{g}(\bar{\nabla}_X V^N, Y) + \bar{g}(X, \bar{\nabla}_Y V^N),$

we have

$$\mathfrak{L}_V \bar{g}(X,Y) = \mathfrak{L}_{V^T} g(X,Y) - 2\bar{g}(h(X,Y),V^N),$$

where h denotes the second fundamental form. Hence from the hypothesis we obtain that

$$\mathfrak{L}_{V^T}g(X,Y) = \mathfrak{L}_V \bar{g}(X,Y) + 2\bar{g}(V,H)g(X,Y)$$
$$= 2\{\sigma + \bar{g}(V,H)\}g(X,Y),$$

where H denotes the mean curvature vector field. This completes the proof.

Now we prove Theorem 1 as follows:

Proof of Theorem 1. Suppose that V and V^T satisfy $\mathfrak{L}_V \bar{g} = 2\sigma \bar{g}$ on $(\bar{M}_k^{n+1}(\bar{c}), \bar{g})$ and $\mathfrak{L}_{V^T} g = 2\tau g$ on M^n , respectively. From the proof of the above proposition, we obtain

$$(2.1) \bar{g}(V, h(X, Y)) = (\tau - \sigma)g(X, Y), \quad X, Y \in TM^n,$$

where h denotes the second fundamental form. We let $U = \{p \in M | V^N(p) \neq 0\}$. From now on, we use $\langle \cdot, \cdot \rangle$ for the metrics \bar{g} and g unless they are confused. Then (2.1) shows that U is totally umbilic in

 $\bar{M}_k^{n+1}(\bar{c})$ with mean curvature vector field $H = \frac{(\tau - \sigma)}{\langle V, \xi \rangle} \xi$, where ξ is a unit normal vector field on U. By the Codazzi equation, we have

$$(2.2) H = a_i \xi, \quad A_{\varepsilon} = \epsilon a_i I$$

for some constant a_i on each connected component U_i of U where $\epsilon = \langle \xi, \xi \rangle = \pm 1$. Hence, the Gauss equation shows that each U_i has constant sectional curvature $c_i = \bar{c} + \epsilon a_i^2$. From (2.2) and the hypothesis we obtain

(2.3)
$$\nabla \langle V, \xi \rangle = -\{ \bar{\nabla}_{\xi} V + \epsilon a_i V \}^T,$$

where $\nabla \langle V, \xi \rangle$ is the gradient vector of $\langle V, \xi \rangle$ on M^n . Furthermore, on each U_i , by differentiating both sides of (2.3), we have

$$(2.4) \qquad -\langle \nabla_{X} \nabla \langle V, \xi \rangle, Y \rangle$$

$$= \{ \langle \bar{\nabla}_{X} \bar{\nabla}_{\xi} V, Y \rangle + \epsilon a_{i} \langle \bar{\nabla}_{X} V, Y \rangle \}$$

$$+ \{ \epsilon a_{i} \sigma + \epsilon a_{i}^{2} \langle V, \xi \rangle \} \langle X, Y \rangle, \quad X, Y \in TM^{n}.$$

Since $\bar{M}_k^{n+1}(\bar{c})$ has constant sectional curvature \bar{c} , for $X,Y\in TM^n$ the Riemann curvature tensor \bar{R} of $\bar{M}_k^{n+1}(\bar{c})$ satisfies

(2.5)
$$\langle \bar{R}(X,\xi)V,Y\rangle = \bar{c}\langle V,\xi\rangle\langle X,Y\rangle.$$

Note that we can extend X,Y locally to $\bar{M}_k^{n+1}(\bar{c})$ so that

$$\bar{\nabla}_{\xi}X = \bar{\nabla}_{\xi}Y = 0.$$

Hence on U_i we have from (2.2) and (2.5)

(2.7)
$$\langle \bar{\nabla}_X \bar{\nabla}_{\xi} V, Y \rangle + \epsilon a_i \langle \bar{\nabla}_X V, Y \rangle = \langle \bar{\nabla}_{\varepsilon} \bar{\nabla}_X V, Y \rangle + \bar{c} \langle V, \xi \rangle \langle X, Y \rangle, \quad X, Y \in TM^n.$$

Since the left hand side of (2.4) and the second term of right hand side of (2.4) are symmetric in $X,Y \in TM^n$, respectively, we easily see that $\langle \bar{\nabla}_{\xi} \bar{\nabla}_X V, Y \rangle$ is symmetric in $X,Y \in TM^n$ on each on U_i . Thus we have from (2.6)

(2.8)
$$\xi\langle \bar{\nabla}_X V, Y \rangle = \xi\langle \bar{\nabla}_Y V, X \rangle, X, Y \in TM^n.$$

Using the conformality of V, from (2.8) we obtain

(2.9)
$$\langle \bar{\nabla}_{\xi} \bar{\nabla}_{X} V, Y \rangle = \xi(\sigma) \langle X, Y \rangle, \quad X, Y \in TM^{n}.$$

On the other hand, equations (2.7) and (2.9) imply that for $X, Y \in TM^n$

(2.10)
$$\langle \bar{\nabla}_{X} \bar{\nabla}_{\xi} V, Y \rangle$$

$$= \xi(\sigma) \langle X, Y \rangle - \epsilon a_{i} \langle \bar{\nabla}_{X} V, Y \rangle + \bar{c} \langle V, \xi \rangle \langle X, Y \rangle.$$

Hence (2.4) gives

(2.11)
$$\langle \nabla_X \nabla \langle V, \xi \rangle, Y \rangle = -\{c_i \langle V, \xi \rangle + \xi(\sigma) + \epsilon a_i \sigma\} \langle X, Y \rangle,$$

on each U_i where $X, Y \in TM^n$ and c_i denotes the sectional curvature $\bar{c} + \epsilon a_i^2$ of U_i . Since V satisfies $\mathfrak{L}_V \bar{g} = 2\sigma \bar{g}$ on $\bar{M}_k^{n+1}(\bar{c})$, σ satisfies the following ([19] or [13]; Corollary 2.2):

(2.12)
$$\bar{\nabla}_X \bar{\nabla}\sigma = -\bar{c}\sigma X, \quad X \in T\bar{M}.$$

This together with (2.2) implies that $\xi(\sigma) + \epsilon a_i \sigma$ is a constant b_i on each U_i . Thus from (2.11) we obtain on each U_i

(2.13)
$$\nabla_X \nabla \langle V, \xi \rangle = -\{c_i \langle V, \xi \rangle + b_i\} X, \quad X \in TM^n,$$

which implies that $\nabla \langle V, \xi \rangle$ is a closed conformal vector field on each U_i , and hence on the closure of U.

If the complement of U has nonempty interior, then $\nabla \langle V, \xi \rangle$ is a trivial closed conformal vector field on it. Thus, by continuity, $\nabla \langle V, \xi \rangle$ is a closed conformal vector field on M^n . Therefore Proposition 2.3 in [12] shows that either U is dense in M^n , or $V^N = 0$ identically on M^n . This completes the proof.

Now we characterize conformal vector fields on totally umbilic hypersurface of semi-Riemannian space form $\bar{M}_k^{n+1}(\bar{c})$ as follows:

THEOREM 3. Let M^n be a connected totally umbilic hypersurface of a semi-Riemannian space form $\bar{M}_k^{n+1}(\bar{c})$. Then any conformal vector field on M^n can be obtained as the tangential part V^T of a conformal vector field V on $\bar{M}_k^{n+1}(\bar{c})$. Furthermore, for any conformal vector field V on $\bar{M}_k^{n+1}(\bar{c})$ which satisfies $V|_{M^n}=W$.

Proof. Let $C(\bar{M})$ and C(M) denote the space of conformal vector fields on $\bar{M}_k^{n+1}(\bar{c})$ and on M^n respectively. Define a map $\psi:C(\bar{M})\to C(M)$ by $\psi(V)=V^T$. Then Proposition 2 shows that ψ is a well-defined linear map.

Suppose that $V \in Ker\psi$. Then we have $V = f\xi$ on M^n , where $f = \epsilon \langle V, \xi \rangle$, ξ is a unit normal vector field on M^n , and ϵ denotes $\langle \xi, \xi \rangle = \pm 1$. Since M^n is totally umbilic, (2.13) shows that f satisfies

(2.14)
$$\nabla_X \nabla f = -(cf + b)X, \quad X \in TM,$$

where c denotes the constant sectional curvature of M^n and b is a constant.

We denote by $GC(M^n)$ the space of all functions f on M^n satisfying (2.14) for some constant $b \in R$. Then $GC(M^n)$ is of (n+2)-dimensional ([18]; pp.336–337). If we define $\varphi : \ker \psi \to GC(M^n)$ by $\varphi(V) = \epsilon \langle V, \xi \rangle$, then (2.14) shows that φ is a well-defined linear map. From the fact that the codimension of the zero set of a nontrivial conformal vector field is greater than 1, we see that φ is injective. Hence we have

(2.15)
$$\dim Ker\psi \leq \dim GC(M) = n + 2.$$

Since $\dim C(\bar{M}) = \frac{(n+2)(n+3)}{2}$ and $\dim C(M) = \frac{(n+1)(n+2)}{2}$ ([11]), by counting dimensions, we see that the inequality in (2.15) becomes an equality, and $\dim Im\psi = \dim C(M)$, which implies that φ is bijective and ψ is surjective.

For any fixed $W \in C(M)$ we choose a $V_0 \in C(M)$ such that $\psi(V_0) = W$. If we denote by $f\xi$ the normal part V_0^N of V_0 on M^n , then (2.13) shows that f and -f belong to $GC(M^n)$. Thus it follows from the bijectivity of φ that there exists a unique V_1 in $Ker\psi$ which satisfies $V_1|_{M^n} = -f\xi$. Therefore $V = V_0 + V_1$ is the desired conformal vector field in $C(\tilde{M})$. This completes the proof.

3. Conformal vector fields on space forms

In this section, first of all, we give a complete description of conformal vector fields on semi-Euclidean space R_k^{n+1} , which might be well-known but we could not find a reference for it (cf. [9]; pp. 25–26). Then theorem 3 gives a complete description of conformal vector fields on non-flat semi-Riemannian space forms (cf. [18]; pp. 336–337).

Consider the semi-Euclidean space (R_k^{n+1}, \bar{g}) with metric tensor $ds^2 = \sum_{i=1}^{n+1} \epsilon_i dx_i^2$, where $\epsilon_1 = \cdots = \epsilon_k = -1, \epsilon_{k+1} = \cdots = \epsilon_{n+1} = 1$. If $V = (V_1, \cdots, V_{n+1})$ is a conformal vector field on R_k^{n+1} which satisfies

$$\mathfrak{L}_V \bar{g} = 2\sigma \bar{g},$$

then σ satisfies $\bar{\nabla}_X \bar{\nabla} \sigma = 0$ ([19] or [13]; Corollary 2.2), so that we have for some constants a_1, \dots, a_{n+1}, b

(3.2)
$$\sigma(x_1, \dots, x_{n+1}) = \sum_{j=1}^{n+1} a_j x_j + b.$$

From (3.1) and (3.2) we obtain the following:

$$(3.3) V_{j,j} = \sigma, \quad j \in \{1, 2, \cdots, n+1\},$$

(3.4)
$$\epsilon_j V_{j,k} + \epsilon_k V_{k,j} = 0$$
 for distinct $j, k \in \{1, 2, \dots, n+1\}$,

where $V_{j,k}$ denotes the k-th partial derivative $\frac{\partial V_j}{\partial x_k}$ of V_j . If we also denote by $V_{j,kl}$ the l-th partial derivative of $V_{j,k}$, then (3.4) implies that for all distinct $j, k, l \in \{1, 2, \dots, n+1\}$

$$V_{j,k\ell} = -(\epsilon_j \epsilon_k) V_{k,\ell j} = (-\epsilon_j \epsilon_k) (-\epsilon_k \epsilon_\ell) V_{\ell,jk}$$
$$= (-\epsilon_j \epsilon_k) (-\epsilon_k \epsilon_\ell) (-\epsilon_\ell \epsilon_i) V_{j,k\ell} = -V_{j,k\ell},$$

so that we have

$$(3.5) V_{j,k\ell} = 0 for distinct j, k, \ell \in \{1, \dots, n+1\}.$$

From (3.2), (3.3) and (3.4) we also have the following:

$$(3.6) V_{j,kj} = V_{j,jk} = a_k, \quad j,k \in \{1,\cdots,n+1\},$$

(3.7)
$$V_{j,kk} = (-\epsilon_j \epsilon_k) V_{k,jk} = -\epsilon_j \epsilon_k V_{k,kj} \\ = -\epsilon_j \epsilon_k a_j \quad \text{for distinct} \quad j,k \in \{1,\cdots,n+1\}.$$

Hence (3.5) together with (3.6) and (3.7) implies for distinct $j, k \in \{1, \dots, n+1\}$

$$(3.8) V_{j,k} = a_k x_j - \epsilon_j \epsilon_k a_j x_k + b_{jk}, \quad b_{jk} \in R.$$

Furthermore, (3.4) and (3.8) show that b_{jk} satisfies

(3.9)
$$\epsilon_i b_{ik} + \epsilon_k b_{kj} = 0$$
 for distinct $j, k \in \{1, \dots, n+1\}$.

Thus from (3.3) and (3.8) we have for some constants c_j , $j \in \{1, 2, \dots, n+1\}$

$$(3.10) V_j(x_1, \cdots, x_{n+1}) = \sigma x_j - \frac{1}{2} \epsilon_j a_j \langle x, x \rangle + \sum_{i \neq j} b_{ji} x_i + \frac{1}{2} c_j,$$

or, equivalently we have

(3.11)
$$V(x_1, \dots, x_{n+1}) = \sigma x - \frac{1}{2} \langle x, x \rangle \bar{a} + Bx + \frac{1}{2} C,$$

where $\bar{a} = (\epsilon_1 a_1, \dots, \epsilon_{n+1} a_{n+1})$, $C = (c_1, \dots, c_{n+1})$, σ is given by (3.2) and B denotes an $(n+1) \times (n+1)$ matrix (b_{ij}) which satisfies (3.9) and $b_{jj} = 0$. Note that $Bx + \frac{1}{2}C$ is the Killing part of V on R_k^{n+1} ([14]; p. 253).

Now consider a non-flat semi-Riemannian space form $M^n(\epsilon)$ with constant sectional curvature $\epsilon = \pm 1$ which is given by as a totally umbilic hypersurface of R_k^{n+1} for some suitable k;

$$M^n(\epsilon) = \{x \in R_k^{n+1} | \langle x, x \rangle = \epsilon \}.$$

Then Theorem 3 shows that the space C(M) of conformal vector fields on $M^n(\epsilon)$ is given by

$$(3.12) C(M) = \{V|_{M^n}|V \in C(R_k^{n+1}), \quad \langle V, x \rangle \equiv 0 \text{ on } M^n(\epsilon)\}.$$

Hence from (3.11) we see that on $M^n(\epsilon)$

(3.13)
$$\langle V, x \rangle = \frac{\epsilon}{2} \sum_{j=1}^{n+1} (a_j + \epsilon \epsilon_j c_j) x_j + b\epsilon = 0,$$

which shows that

$$\bar{a} = -\epsilon C, \quad b = 0.$$

Thus (3.11), (3.12) and (3.14) imply that every element of C(M) is of the following form:

$$(3.15) V|_{M^n} = \{C - \epsilon \langle C, x \rangle x + Bx\}|_{M^n},$$

where $C = (c_1, \dots, c_{n+1})$, and B is an $(n+1) \times (n+1)$ matrix (b_{ij}) which satisfies $\epsilon_j b_{jk} + \epsilon_k b_{kj} = 0$ for all $j, k \in \{1, \dots, n+1\}$. The restriction of $C - \epsilon \langle C, x \rangle x$ to M^n is nothing but the tangential part C^T of a constant vector $C \in R_k^{n+1}$, which is also the gradient vector field $\nabla \sigma_C(x)$ of a linear function $\sigma_C(x) = \langle C, x \rangle$ on $M^n(\epsilon)$ ([9, 10]). And $Bx|_{M^n}$ is the Killing part of $V|_{M^n}$ on $M^n(\epsilon)$.

From (2.1), (3.1), (3.2), (3.12) and (3.14) we also see that $\mathfrak{L}_{V|_{M^n}}g = 2\tau g$ on $M^n(\epsilon)$, where τ is the restriction to $M^n(\epsilon)$ of a linear function $\sigma = -\epsilon \langle C, x \rangle$ on R_k^{n+1} (cf. Lemma in [3]).

References

- [1] S.-S. Ahn, D.-S. Kim, and Y. H. Kim, Totally umbilic Lorentzian submanifolds, J. Korean Math. Soc. 33 (1996), 507-512.
- [2] D. E. Blair, On the zeros of a conformal vector field, Nagoya Math. J. 55 (1974), 1-3.
- [3] J. Bolton, On Riemannian manifolds which admit a parallel family of totally umbilical hypersurfaces, Quart. J. Math. Oxford(2) 36 (1985), 1-15.
- [4] B.-Y. Chen, Geometry of submanifolds and its applications, Science University of Tokyo, Tokyo, 1981.
- [5] _____, Total mean curvature and submanifolds of finite type, World Scientific Publishing Co., Singapore, 1984.
- [6] K. L. Duggal and R. Sharma, Symmetries of Spacetime and Riemannian Manifolds, Kluwer Academic Publishers, Dordrecht, 1999.
- [7] G. S. Hall, Symmetries and geometry in general relativity, Diff. Geom. and Appl. 1 (1991), 35–45.
- [8] Y. Kerbrat, Transformations conformes des varietes pseudo-riemanniannes, J. Diff. Geom. 11 (1976), 547-571.
- [9] M. G. Kerckhove, Conformal transformations of pseudo-Riemannian Einstein manifolds, Thesis, Brown University (1988).
- [10] _____, The structure of Einstein spaces admitting conformal motions, Class. Quantum Grav. 8 (1991), 819–825.
- [11] S. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, Heidelberg, 1972.
- [12] W. Kühnel and H. B. Rademacher, Essential conformal fields in pseudo-Riemannian geometry, J. Math. Pures et Appl. 74 (1995), 453-481.
- [13] _____, Conformal vector fields on pseudo-Riema-nnian spaces, Diff. Geom. and Appl. 7 (1997), 237–250.
- [14] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Accademic Press, Inc., New York, 1983.
- [15] R. Penrose and W. Rindler, Spinors and space time, Vol.1,2, Cambridge Monographs on Math. Physics, Cambridge Univ. Press, Cambridge-New York, 1987.
- [16] W. A. Poor, Differential geometric structures, McGraw-Hill Book Co., New York, 1981.

- 680
- [17] R. Sharma and K. L. Duggal, A characterization of an affine conformal vector field, C. R. Math. Rep. Acad. Sci. Canada 7 (1985), 201–205.
- [18] Y. Tashiro and K. Miyashita, Conformal transformations in complete product Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 328–346.
- [19] K. Yano, The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957.

DONG-SOO KIM, SEON-BU KIM, AND SEONG-HEE PARK, DEPARTMENT OF MATHEMATICS, COLLEGE OF NATURAL SCIENCES, CHONNAM NATIONAL UNIVERSITY, KWANGJU 500-757, KOREA

 $\begin{tabular}{ll} E-mail: $dosokim@chonnam.chonnam.ac.kr $$ sbk@chonnam.chonnam.ac.kr $$ \end{tabular}$

Young Ho Kim, Department of Mathematics, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea *E-mail*: yhkim@knu.ac.kr