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UNIQUENESS OF FAMILIES OF MINIMAL SURFACES IN R3

Eunjoo Lee

Abstract. We show that an umbilic-free minimal surface in R3 belongs

to the associate family of the catenoid if and only if the geodesic curva-

tures of its lines of curvature have a constant ratio. As a corollary, the
helicoid is shown to be the unique umbilic-free minimal surface whose

lines of curvature have the same geodesic curvature. A similar character-

ization of the deformation family of minimal surfaces with planar lines of
curvature is also given.

1. Introduction

In differential geometry, Liouville’s equation in R3 is a nonlinear partial
differential equation satisfied by the conformal factor of a metric

ds2 = e2w(du2 + dv2)

on a surface of constant Gaussian curvature K:

(1.1) 4w = −Ke−2w,

where 4 = ∂2

∂u2 + ∂2

∂v2 .
It is, in fact, a consequence of the Gauss equation in isothermal coordinates.

In [1], it was shown that, when K ≡ −1, the entire solution of (1.1) determines
a unique global meromorphic function g such that

(1.2) ew(u,v) =
1 + |g(z)|2

2|g′(z)|
, z = u+ iv ∈ C

up to the Möbius transformations ag−b̄
bg+ā , |a|2 + |b|2 > 0.

The function g is closely related to the Weierstrass representation formula
for a minimal surface:

X(u, v) = Re

∫ (
1

2
(1− g2),

i

2
(1 + g2), g

)
η,

Received November 23, 2017; Revised July 9, 2018; Accepted August 29, 2018.
2010 Mathematics Subject Classification. 53A10, 49Q05, 53C42.
Key words and phrases. Liouville’s equation, geodesic curvature, associate minimal sur-

faces, helicoid, catenoid, Enneper surface.

c©2018 Korean Mathematical Society

1459



1460 E. LEE

with a meromorphic function g and a homomorphic one form η with g2η be-
ing holomorphic over a simply connected domain in C. Such {η, g} is called a
Weierstrass pair. It is now clear that this representation formula relates the
minimal surface theory to the complex analysis. In particular, a minimal sur-
face can be determined solely by g when the coordinate curves are the lines of
curvature.

The relation between Liouville’s equation and minimal surfaces is well de-
scribed in [2], where some solutions of (1.2) and the corresponding minimal
surfaces are listed. In addition, in [3] it was shown how Liouville’s equation
can be used in the classification of minimal surfaces with planar lines of curva-
ture in R3. In fact, Nitsche gave a complete classification of minimal surfaces
with planar lines of curvature in R3 by analyzing the orthogonal families of
circles [7]. His method was generalized by Leite [6] to give a full classification
of maximal surfaces with planar lines of curvature in Lorentz–Minkowski space
R2,1.

On a separate note, by using the notion of a Chebyshev net, Riveros and
Corro [8] characterized the catenoid as the only non-planar minimal surface in
R3 whose asymptotic lines have the same geodesic curvature. The fact that the
associate minimal surfaces share the same first fundamental form enabled them
to conclude that a set of coordinate curves of the minimal surface associated to
the catenoid have the same geodesic curvature. Moreover, in [9], the authors
classified GICM-surfaces, defined by the class of minimal surfaces in R3 such
that one family of coordinate curves among its isothermal coordinates have
zero geodesic curvature.

In this article, we show that in the line of curvature coordinates, the geodesic
curvatures of a pair of coordinate curves can be expressed by the conformal
factor of the metric. This observation leads us to the characterization theorems
on the helicoid, the catenoid, and the minimal surfaces associated to them.
More specifically, the minimal surfaces associated to the catenoid are shown
to be the only minimal surfaces such that geodesic curvatures of their lines
of curvature have a constant ratio. As a corollary, the helicoid is shown to
be the unique umbilic-free minimal surface whose lines of curvature have the
same geodesic curvature. In addition, by applying this result to the conjugate
surfaces of the helicoid, we obtain the same characterization result obtained in
[8] mentioned above.

It is noteworthy that according to our result, the ratio of geodesic curvatures
of lines of curvature indicates a specific surface among the surfaces associated to
the catenoid. In other words, each value of the ratio of the geodesic curvatures
corresponds to one specific surface in the associate family of the catenoid.
As for the method of proofs, our setting avoids solving complicated partial
differential equations. Finally, a different characterization of the deformation
family of minimal surfaces introduced in [3] that includes Enneper surface and
Bonnet surfaces will also be given.
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2. Preliminaries

It is well known that the lines of curvature can be introduced as parame-
ter curves in a neighborhood of any point, except umbilical or planar points,
provided that the surface has parametrization with continuous derivatives of
the third order. See [10] for details. Because we consider umbilic-free minimal
surfaces, lines of curvature are allowed to be used as parameter curves.

Conversely, given a minimal surface without umbilic points in a simply con-
nected region, one can always find the parameters such that the coordinate lines
are lines of curvature and the conformal factor in the metric corresponds to a
solution of the Liouville equation (1.1). The following is a collection of well-
known facts on the relation between Liouville’s equation and minimal surfaces
that was investigated in [2] and [3].

Proposition 1. Let X : Σ ⊂ R2 → R3 be a conformal minimal immersion of a
simply connected domain Σ. Let the metric be given by ds2 = E(du2 +dv2) and
let the second fundamental form be represented by l du2 +2m dudv+ndv2. Let
z = u+ iv be a complex coordinate in the neighborhood of a point in Σ. Then,
there always exists a change of variables z → z̃ such that the Hopf differential
H :=

(
l−n

2 − im
)

dz2 becomes H = −dz̃2. z̃ is called a Liouville parameter.
Moreover, in the Liouville parameter, the following hold.

(i) E = e2w with the Liouville equation 4w = e−2w.
(ii) Coordinate lines are lines of curvatures.
(iii) The Gauss–Weingarten equations become Xuu = wuXu − wvXv − ~N,

Xuv = wvXu + wuXv,

Xvv = −wuXu + wvXv + ~N.

(iv) The Weierstrass pair is given by {dz
g′ , g}, where g is the stereographic

projection of the oriented normal of X, globally meromorphic with g′(z) 6= 0 at
all regular points and admitting only simple poles.

(v) An entire solution of the Liouville equation (1.1) is expressed by

(2.1) ew(u, v) =
1 + |g(z)|2

2|g′(z)|
, z = u+ iv ∈ C.

Moreover, g and its transformations ag−b̄
bg−ā , |a|2 + |b|2 > 0, give all the possibil-

ities for (2.1) to hold.

Proof. Fact (iii) is easily derived from the general Gauss–Weingarten equations
by using the fact that the coordinates are conformal with E = e2w, l = −1 =
−n, and m = 0. The other facts follow from the series of propositions in section
2 of [2]. �

Note that every minimal surface has one parameter family of minimal sur-
faces that share the same Weierstrass data. More specifically, if a minimal
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surface X ⊂ R3 has the following Weierstrass representation,

X(u, v) = Re

∫ (
1

2
f(1− g2),

i

2
f(1 + g2), fg

)
dz,

with Weierstrass pair {η := f(z)dz, g}, then a family of isometric minimal
surfaces associated to X is defined by

Xθ(u, v) = Re

{
eiθ
∫ (

1

2
f(1− g2),

i

2
f(1 + g2), fg

)
dz

}
.

The collection of such surfaces (Xθ) 0≤θ<2π is often called the associate family
of X. Intuitively, any minimal surface in the family can be deformed to another
one in the same family without tearing or stretching. See [4] for more details.
The most famous example of this is the associate family of the catenoid. Let us
denote it by Catθ. Recall that the catenoid can be given by taking g(z) = −ez
and f(z) = e−z. Therefore, it is easy to see that an explicit parametrization of
Catθ is

Catθ(u, v) = (cos θ coshu cos v + sin θ sinhu sin v,

cos θ coshu sin v − sin θ sinhu cos v, u cos θ + v sin θ).

Note that as θ varies from 0 to π/2, the corresponding surface transforms
from a catenoid to a helicoid.

3. Main results

Let Σ be a non-umbilic minimal surface in the lines of curvature coordinates.
Then, owing to Proposition 1, the first and second fundamental forms of Σ
become I = e2w(du2 + dv2) and II = −du2 + dv2, respectively.

Lemma 1. Let (κg)l1 and (κg)l2 be the geodesic curvatures of a pair of the
lines of curvature l1 (u-parameter curve) and l2 (v-parameter curve) at a point
p ∈ Σ. Then, (κg)l1 = −wv

ew and (κg)l2 = wu
ew .

Proof. Let C(t) = X(t cosφ, t sinφ) be a curve on Σ parametrized by X(u, v)
in the neighborhood of a non-umbilic point p ∈ Σ, where φ is the angle between
C ′(t) and the u-parameter curve Xu(u, v0) at p, independent of t. Then, an
elementary calculation together with Proposition 1(iii) shows that

d2C

ds2
= e−2w

{
(− cosφwu − sinφwv) (cosφXu + sinφXv)

+ cos2 φ
(
wuXu − wvXv − ~N

)
+ 2 cosφ sinφ (wvXu + wuXv)

+ sin2 φ(−wuXu + wvXv + ~N)
}
.

The tangential component of d2C
ds2 becomes

d2C

ds2

∣∣∣∣
TΣ

= e−w (sinφwu − cosφwv) · e−w (cosφXv − sinφXu) .
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Therefore, κg = e−w(sinφwu − cosφwv) and, in particular,

(κg)l1 = κg

∣∣∣∣
φ=0

=
−wv
ew

and (κg)l2 = κg

∣∣∣∣
φ=π/2

=
wu
ew
.

�

In the previous lemma, we saw that the geodesic curvatures of lines of curva-
ture of a minimal surface can be expressed in the partial derivatives of w with
respect to u and v separately. Hence, conditions on the geodesic curvatures
of lines of curvature can be converted into partial differential equations of w.
Note that w(u, v) also satisfies Liouville’s equation (1.1), because (u, v) is the
line of curvature coordinates. Along with Liouville’s equation, we thus obtain
a system of partial differential equations. Solving these equations enables us
to obtain characterizations of certain families of minimal surfaces.

First, let us provide a characterization of the associate family of the catenoid.
It was denoted by Catθ and an explicit parametrization of this family was given
in Section 2.

Theorem 1. The ratio λ of the geodesic curvatures of the lines of curvatures on
a minimal surface Σ is constant if and only if Σ is Cat2θ, one of the associate
family of the catenoid to the helicoid, with θ = arctanλ. Here λ varies from 0
to 1 as Σ changes from a catenoid to a helicoid.

The following lemma is essential in proving our theorem. Recall that a
conformal parameter z = u+ iv ∈ C is called a Liouville parameter if the Hopf
differential H =

(
l−n

2 − im
)

dz2 has the local coefficient −1.

Lemma 2. Let D be a simply connected domain in C. If z = u+iv ∈ D ⊂ C is

a Liouville parameter for a minimal immersion X : D → R3, then z̃ := e
iθ
2 z =(

cos θ2 + i sin θ
2

)
(u+ iv) is a Liouville parameter for the isometric immersion

Xθ associated to X.

Proof. Let {f(z) dz, g(z)} be a Weierstrass pair for X. Then, the Weierstrass
pair for Xθ is

(
eiθf(z) dz, g(z)

)
. Because z is a Liouville parameter for X and,

therefore, coordinate lines are lines of curvature by Proposition 1, we have
f(z)g′(z) = 1. Again from Proposition 1, for z̃ to be a Liouville parameter, z̃
should satisfy H(z̃) = −dz̃2. This is equivalent to

eiθf(z)g′(z)

(
dz

dz̃

)2

= 1.

Hence, dz̃ =
√
eiθ dz, i.e., z̃ = eiθ/2z is a Liouville parameter for Xθ. �

Proof of Theorem 1. First, assume that the ratio λ of the geodesic curvatures
of the lines of curvatures on Σ is constant. Then, without loss of generality,
the constant ratio condition can be written as (κg)l1 = λ(κg)l2 . Therefore, the
following holds:

(κg)l1 = λ(κg)l2
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⇔ 1√
1 + λ2

(κg)l1 −
λ√

1 + λ2
(κg)l2 = 0

⇔ cos θ
(
− wv
ew
)
− sin θ

wu
ew

= 0, where θ = arctanλ

⇔ cos θ wv + sin θ wu = 0.(3.1)

Put s := cos θ u− sin θ v, t := sin θ u+ cos θ v. Then,{
wu = wssu + wttu = cos θ ws + sin θ wt,
wv = wssv + wttv = − sin θ ws + cos θ wt.

Plugging these terms into (3.1), we obtain wt = 0. Because ∂2

∂u2 + ∂2

∂v2 =
∂2

∂s2 + ∂2

∂t2 , we have {
wt = 0,(3.2a)

4w = e−2w,(3.2b)

where 4 = ∂2

∂s2 + ∂2

∂t2 . Observe that (3.2a) implies that w(s, t) = w(s). Hence,
(3.2b) is equivalent to

w′′(s) = e−2w(s).

Multiplying 2w′ on both sides, we obtain

(w′)2 = c− e−2w for some constant c.

As w′′ would be negative if w′ = −
√
c− e−2w, we have w′ =

√
c− e−2w. Thus,

s =

∫
dw√

c− e−2w
=

∫
ew√

ce2w − 1
dw

=
1√
c

∫
sinhx√

cosh2 x− 1
dx by putting

√
c ew = coshx

=
1√
c
x+ d =

1√
c

cosh−1(
√
cew) + d for some constant d.

Therefore, we have w = log 1√
c

cosh(
√
c(s − d)). Observe that c and d can be

seen as a homothety factor and a translation factor, respectively. Hence, by
setting c = 1 and d = 0, we have

w = log cosh s = log cosh(cos θ u− sin θ v).

We claim that w = log cosh(cos θ u − sin θ v) is the solution of the Liouville
equation for Cat2θ. To verify this, first observe that g(z) = ez globally rep-
resents the catenoid. This can be seen directly by calculating the coordinates
explicitly through the Weierstrass representation formula:

x1 = Re
∫

1−g2
2g′ = Re

∫
1−e2z

2ez = −Re
∫

sinh z = − coshu cos v,

x2 = Re
∫

1+g2

2g′ = Re
∫
i 1+e2z

2ez = Re
∫
i cosh z = coshu sin v,

x3 = Re
∫

g
g′ = Re

∫
1 = Rez = u,
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up to constants. Therefore, by Lemma 2, it is clear that

g(eiθz) = e(cos θ+i sin θ)(u+iv)

represents Cat2θ. Substituting it in (2.1) in Proposition 1, we conclude that

w = log
1 + |g(z)|2

2|g′(z)|
= log cosh(cos θ u− sin θ v)

is the solution for Liouville’s equation for Cat2θ.
Conversely, from the claim above, it is clear that each Cat2θ is represented by

w = log cosh(cos θ u− sin θ v). Plugging this w into the equations (κg)l1 = −wv
ew

and (κg)l2 = wu
ew in Lemma 1, it is straightforward that

(κg)l1 =
sin θ tanh(cos θ u− sin θ v)

ew
, (κg)l2 =

cos θ tanh(cos θ u− sin θ v)

ew
.

This is equivalent to (κg)l1 = λ(κg)l2 where λ = tan θ. �

This theorem leads us to the following characterization of the helicoid and
the catenoid, which coincide with the result obtained in [8].

Corollary 1. (i) The helicoid is the only minimal surface at every point of
which two lines of curvature have the same geodesic curvature.

(ii) The catenoid is the only minimal surface at every point of which two
asymptotic lines have the same geodesic curvature.

Proof. (i) We have (κg)l1 = (κg)l2 ⇔ λ = 1 ⇔ Σ = Cat2·
π
4 = Cat

π
2 . Because

Cat
π
2 is the helicoid, we obtain the result.

(ii) In general, for a curve parametrized as X(u(t), v(t)) on a surface Σ, the
geodesic curvature is given by

κg =
√
EG− F 2

[
Γ2

11(u′)3 − Γ1
22(v′)3 +

(
2Γ2

12 − Γ1
11

)
(u′)2v′

−
(
2Γ1

12 − Γ2
22

)
u′(v′)2 − u′′v′ + v′′u′

] (
E(u′)2 + 2Fu′v′ +G(v′)2

)−3/2
,

where E, F , and G are coefficients of the first fundamental form of Σ and
Γkij are the Christoffel symbols of the second kind. (See [5, pp. 544–545] for a
proof.) This formula implies that the geodesic curvature depends only on the
first fundamental form of the surface. On the other hand, it is well known that
asymptotic lines of Σ become lines of curvature of Σ

π
2 as Σ transforms to Σ

π
2 .

From these two properties, it is clear that if we assume the two asymptotic
lines at each point of Σ have the same geodesic curvature, then the two lines of
curvature at each point of Σ

π
2 have the same geodesic curvature. From Corol-

lary 1(i), Σ
π
2 should be the helicoid and, therefore, Σ should be the catenoid.

Likewise, the converse holds true. �

The notion of GICM-surfaces was introduced in [9] as the class of minimal
surfaces in R3 having isothermal coordinates such that one of its coordinate
curves are geodesic. The authors then proved that if a minimal surface with
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isothermal coordinates such that the geodesic curvatures κ1
g and κ2

g of coor-

dinate curves satisfy ακ1
g + βκ2

g = 0 for some α, β ∈ R, then it should be a

GICM-surface. It is clear that, by definition, at least one of κ1
g and κ2

g is zero for
a GICM-surface, therefore the converse holds. The following corollary shows
the relation between their result and Theorem 1. Note that (α, β) 6= (0, 0) for
the expression ακ1

g + βκ2
g = 0 to be non-trivial.

Corollary 2. Let Σ be a minimal surface such that geodesic curvatures of
its coordinate curves l1, l2 satisfy α (κg)l1 + β (κg)l2 = 0, α, β ∈ R, (α, β) 6=
(0, 0). If l1 and l2 are lines of curvature, then Σ should be Cat2θ where θ =
arcsin α√

α2+β2
.

Proof. Without loss of generality, assume α 6= 0. Then, it is clear that (κg)l1 =

λ (κg)l2 with λ = −β/α. Thus, if l1 and l2 are lines of curvature, by Theorem

1, Σ = Cat2θ with θ = arctanλ or, equivalently, θ = arcsin α√
α2+β2

. �

Put another way, if Σ is a minimal surface with α (κg)l1 + β (κg)l2 = 0,

α, β ∈ R, (α, β) 6= (0, 0), it should be a GICM-surface. If, in addition, the
coordinate curves are lines of curvature, then, among all GICM-surfaces, Σ
should be Cat2θ with θ = arcsin α√

α2+β2
.

Next, we turn our attention to the minimal surfaces with planar lines of
curvature. Nitsche [7, §175 on p. 165] showed that these surfaces must be the
plane, the catenoid, the Enneper surface, or one of the Bonnet surfaces. Using
Lemma 1, let us calculate geodesic curvatures of lines of curvature of such
surfaces.
(i) Catenoid. The catenoid is Cat0 in the previous theorem, which implies
w = log coshu. Therefore, the geodesic curvatures are (κg)l1 = 0 and (κg)l2 =
sinhu

cosh2 u
= sinhu

e2w .

(ii) Enneper surface. It is well known that the Enneper surface can be

parametrized by X(u, v) =
(
u − u3

3 + uv2, v − v3

3 + vu2, u2 − v2
)

with the
Weierstrass data expressed by f(z) = 1 and g(z) = z, z = u + iv ∈ C. As

Im{fg′} = 0, the coordinate curves are lines of curvature and w=log 1+|g(z)|2
2|g′(z)| =

log 1+u2+v2

2 . Therefore, (κg)l1 = − v
e2w and (κg)l2 = u

e2w .

(iii) Bonnet surfaces. For each t > 0, a parametrization of the Bonnet
surface can be given by Bt(u, v) = (coshu cos v + tu, coshu sin v + tv, u) −
te−u

2 (t cos v,−t sin v, 2 cos v). The corresponding Weierstrass data are f(z) =
e−z and g(z) = ez + t with t > 0. Again, Im{fg′} = 0 implies w =

log 1+|g(z)|2
2|g′(z)| = log 1+(eu cos v+t)2+(eu sin v)2

2eu = log eu+(1+t2)e−u+2t cos v
2 . There-

fore, (κg)l1 = t sin v
e2w and (κg)l2 = eu−(1+t2)e−u

2e2w .

Observe that the catenoid, the Enneper surface, and the Bonnet surfaces
have geodesic curvatures of their lines of curvature in the form (κg)l1 = ζ(v)/e2w
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and (κg)l2 = η(u)/e2w for some single-variable functions ζ(v) and η(u). In fact,
the following theorem shows that the converse is true.

Let E be the conformal factor of the first fundamental form of a minimal
surface Σ and let (κg)l1 and (κg)l2 be the geodesic curvatures of a pair of lines
of curvature l1 and l2, as before.

Theorem 2. If (κg)l1 = ζ(v)/E and (κg)l2 = η(u)/E for some single-variable

C2-functions ζ(v) and η(u), then Σ must be one of the following:
• plane;
• catenoid;
• Enneper’s surface;
• one of the Bonnet family.

Proof. We have {
(κg)l1 = ζ(v)/E,

(κg)l2 = η(u)/E

is equivalent to {
ewwu = ζ(v),
ewwv = η(u).

This is equivalent to (ewwu)v = 0 = (ewwv)u, i.e., ew(wuwv + wuv) = 0. We
claim that (wuwv + wuv) = 0 if and only if the lines of curvature of Σ are
plane curves. To see this, we follow the computation of Lemma 2.1 in [3]: Let
X(u, v) be a parametrization of Σ in the line of curvature coordinates in the
neighborhood of a given point. By Proposition 1(iii), it is a straightforward

computation that 〈Xuuu, Xv〉 = −2(wvwv+wuv) and 〈Xuuu, ~N〉 = −wu. Thus,

det(Xu, Xuu, Xuuu) = det(Xu, wuXu − wvXv − ~N,Xuuu)

= det(Xu, −wvXv, 〈Xuuu, ~N〉 ~N)

+ det(Xu,− ~N, 〈Xuuu, Xv〉Xv)

= (−wv〈Xuuu, ~N〉+ 〈Xuuu, Xv〉) det(Xu, Xv, ~N)

= − (wuwv + wuv)|Xu||Xv|
= − (wuwv + wuv)e

2w = 0.

Hence, the u-parameter curves are torsion-free, and, in the same way, so are
the v-parameter curves. In other words, the lines of curvature of Σ are plane
curves and the claim holds true. Therefore, by Nitsche’s classification theorem
on minimal surfaces with plane lines of curvature, Σ should be one of the
surfaces listed in the theorem. �

Note that the principal curvatures for a point in Σ in our setting are e−2w

and −e−2w. This allows us to restate the theorem as follows.

Theorem 3 (Restated). Let κ be the maximum of principal curvature at a
point of a minimal surface Σ. If (κg)l1 = κ ζ(v) and (κg)l2 = κ η(u) for
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some single-variable C2-functions ζ(v) and η(u), then Σ must be the plane, the
catenoid, the Enneper surface, or one of the Bonnet family.

Finally, in [3], Cho and Ogata obtained a one-parameter family of these
minimal surfaces by proving the existence of axial directions, which then en-
abled them to recover the Weierstrass data. Therefore, Theorems 2 and 3 are
characterizations of families of minimal surfaces with planar lines of curvature
in terms of geodesic curvatures.
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ing up this topic and Professor Jaigyoung Choe for giving helpful comments.
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