TOTALLY UMBILIC HYPERSURFACES OF A SPACE FORM

DONG-SOO KIM AND SEONG-HEE PARK

Dept. of Mathematics, Chonnam National University, Kwangju 500-757, Korea.

1. Introduction

A totally umbilic submanifold of a pseudo-Riemannian manifold is a submanifold whose first fundamental form and second fundamental form are proportional. An ordinary hypersphere $S^n(r)$ of an affine (n+1)-space of the Euclidean space E^m is the best known example of totally umbilic submanifolds of E^m . The totally umbilic submanifolds of a Riemannian space form with constant sectional curvature are well known ([3,4]), For totally umbilic submanifolds of pseudo-Riemannian space form, see [1] and [8].

An infinitesimal conformal transformation, or conformal vector field on a pseudo-Riemannian manifold (M,g) is a vector field V on M satisfying $\mathfrak{L}_V g = 2\sigma g$, where \mathfrak{L} denotes the Lie derivative on M and σ is a smooth function. If (M,g) is a totally umbilic submanifold of a pseudo-Riemannian manifold (\bar{M},\bar{g}) , then it is well-known that for any conformal vector field V on \bar{M} , the tangential part V^T of V on M becomes a conformal vector field on $M(\text{Proposition in }\S\ 2)$.

In this note we prove the converse of the above proposition for a hypersurface of a pseudo-Riemannian space form $\bar{M}_{\nu}^{n+1}(\bar{c})$ with constant sectional curvature \bar{c} .

Received April 24, 1998.

¹⁹⁹¹ AMS Subject Classification: 53C50, 53A30.

Key words and phrases: Totally umbilic hypersurface, space form, conformal vector field.

This work was partially supported by BSRI-97-1425.

2. Main Theorem

On a pseudo-Riemannian manifold (M, g) a vector field V is called conformal if it preserves the conformal class of the metric:

$$\mathfrak{L}_V g = 2\sigma g$$

for some function σ .

Recall that by definition $\mathfrak{L}_V g(X,Y) = g(\nabla_X V,Y) + g(X,\nabla_Y V)$ for arbitrary tangent vectors X,Y where ∇ denotes the Levi-civita connection. Necessarily the function σ is $\frac{1}{n}div(V)$, where div(V) denotes the divergence of the vector field V.

PROPOSITION. Let (M^n, g) be a totally umbilic submanifold of a pseudo-Riemannian space (\bar{M}^m, \bar{g}) . If V is a conformal vector field on \bar{M} , then the tangential part V^T of V on M is a conformal vector field on M.

proof. Let V^T and V^N be the tangential and normal part of V on M, respectively. Then since for all $X, Y \in TM$

$$\begin{split} &\mathfrak{L}_{V}\bar{g}(X,Y) = \bar{g}(\bar{\nabla}_{X}V,Y) + \bar{g}(X,\bar{\nabla}_{Y}V) \\ &= \bar{g}(\bar{\nabla}_{X}V^{T},Y) + \bar{g}(X,\bar{\nabla}_{Y}V^{T}) + \bar{g}(\bar{\nabla}_{X}V^{N},Y) + \bar{g}(X,\bar{\nabla}_{Y}V^{N}), \end{split}$$

we obtain from the hypothesis that

$$\mathcal{L}_{V}\bar{g}(X,Y) = g(\nabla_{X}V^{T},Y) + g(X,\nabla_{Y}V^{T}) - 2\bar{g}(V^{N},H)g(X,Y)$$
$$= \mathcal{L}_{V}g(X,Y) - 2\bar{g}(V,H)g(X,Y).$$

Hence we see that for all $X, Y \in TM$

(2.1)
$$\mathcal{L}_{V^T} g(X,Y) = \mathcal{L}_{V} \bar{g}(X,Y) + 2\bar{g}(V,H)g(X,Y).$$

$$= 2\{\sigma + \bar{g}(V,H)\}g(X,Y),$$

where $n\sigma$ is the divergence of V on \bar{M} . This completes the proof.

Now for a hypersurface of a pseudo-Riemannian space form we prove the converse as follows :

THEOREM. Let (M^n,g) be a connected hypersurface of a pseudo-Riemannian space form $(\bar{M}_{\nu}^{n+1}(\bar{c}),\bar{g})$. Suppose that \bar{M} carries a conformal vector field V with $\mathfrak{L}_V\bar{g}=2\sigma\bar{g}$ of which the tangential part V^T on M becomes a conformal vector field with $\mathfrak{L}_{V^T}g=2\tau g$. If the restriction $\sigma|_M$ of σ on M is not identically equal to τ , then (M^n,g) is a totally umbilic and not totally geodesic submanifold of $(\bar{M}_{\nu}^{n+1}(\bar{c}),\bar{g})$.

proof. As in the proof of the above proposition, we obtain

$$\mathfrak{L}_{V^T}g(X,Y) = \mathfrak{L}_V\bar{g}(X,Y) + 2\bar{g}(V,h(X,Y))$$

for all $X, Y \in TM$, where h is the second fundamental form of M in \bar{M} . From the hypothesis and from (2.2) we see that for all $X, Y \in TM$

$$(2.3) \bar{g}(V, h(X, Y)) = (\tau - \sigma)g(X, Y).$$

We let $U = \{p \in M | \sigma(p) \neq \tau(p)\}$, then U is a nonempty open set. And (2.3) shows that U is totally umbilic with mean curvature vector field $H = \frac{\tau - \sigma}{\langle V, \xi \rangle} \xi$, where ξ a locally defined unit normal vector field on M with $\bar{g}(\xi, \xi) = \epsilon = \pm 1$. Hence by Codazzi equation we see that for each connected component U_i of U, there exists a nonzero constant a_i which satisfies $\tau - \sigma = a_i < V, \xi >$ and $H = a_i \xi$ on U_i . Furthermore, each U_i has constant sectional curvature $c_i = \bar{c} + \epsilon a_i^2$. Since V is a conformal vector field on a space form $\bar{M}_{\nu}^{n+1}(\bar{c})$, the divergence $(n+1)\sigma$ satisfies ([6,9])

$$(2.4) \bar{\nabla}_X \bar{\nabla}\sigma = -\bar{c}\sigma X$$

for all vector field X on \overline{M} , where $\overline{\nabla}\sigma$ denotes the gradient of σ on \overline{M} . Analogously, on each U_i , τ satisfies

$$(2.5) \nabla_X \nabla \tau = -c_i \tau X$$

for all vector field X on U_i .

From (2.4), it is easy to show that on each U_i

$$(2.6) \nabla_X \nabla \sigma = -\varphi X$$

for all vector field X on U_i , where we denote by φ and $\nabla \sigma$ the function $\bar{c}\sigma - \epsilon a_i < \bar{\nabla}\sigma, \xi >$ and the gradient of the restriction $\sigma|_M$ on U_i , respectively. From (2.6) it follows that for all vector fields X, Y on U_i

$$(2.7) R(X,Y)\nabla\sigma = \langle Y,\nabla\varphi \rangle X - \langle X,\nabla\varphi \rangle Y,$$

where R is the Riemann curvature tensor of (M^n, g) . Since U_i has constant sectional curvature c_i , (2.7) shows that $\nabla \varphi = c_i \nabla \sigma$, that is, $\varphi = c_i \sigma + b_i$ for some constant b_i . Hence (2.6) may be rewritten as follows:

$$(2.8) \nabla_X \nabla \sigma = -(c_i \sigma + b_i) X$$

for all vector fields X on U_i . Thus from (2.5) and (2.8) we have for all tangent vector fields X on U_i

(2.9)
$$\nabla_X \nabla(\tau - \sigma) = -\{c_i(\tau - \sigma) - b_i\}X.$$

Now suppose that the interior open set W of U^c is not empty. Then on W, hence on the closure \overline{W} of W we have

(2.10)
$$\tau - \sigma = 0$$
, $\nabla(\tau - \sigma) = 0$, $\nabla_X \nabla(\tau - \sigma) = 0$.

Since \bar{W} is a proper subset of M, there exists at least one component U_i of U of which closure intersects \bar{W} . For such U_i , (2.9) and (2.10) show that $b_i = 0$. By the same argument as above, it may be proven that b_i is trivial for all i. If \bar{U}_i intersects \bar{U}_j , then on $\bar{U}_i \cup \bar{U}_j$ M has mean curvature vector field $H = a_i \xi = a_j \xi$, and has constant sectional curvature, $c_i = c_j$. This implies that if we let A_i denote a connected component of the complement of \bar{W} , then we have for all vectors X on A_i

(2.11)
$$\nabla_X \nabla(\tau - \sigma) = -c_i(\tau - \sigma)X,$$

where c_i denotes the constant sectional curvature on A_i . For a fixed point p in the boundary of W, we consider a normal neighborhood N about p. Then on N, there exists a point q of U. Since U is

contained in the complement of \bar{W} , q lies in a component A_i . Let $\gamma(t)$ denote the unique geodesic in N with $\gamma(0) = p$ and $\gamma(1) = q$, and let t_o denote the infimum of t which satisfies $\gamma([t,1]) \subset A_i$. Then, since $\gamma(t_o)$ lies in the boundary of W, $(\tau - \sigma)$ and $\nabla(\tau - \sigma)$ vanish at $\gamma(t_o)$, respectively. Hence (2.11) with Proposition 2.1 in [7] shows that $\tau - \sigma$ vanishes identically on $\gamma([t_o, 1])$, in particular, $(\tau - \sigma)$ vanishes at q in U. This contradiction shows that the interior open set W of U^c is empty, that is, the closure \bar{U} of U is the whole hypersurface M. This, by continuity, completes the proof.

REMARK. If M^n is a totally geodesic hypersurface or an integral hypersurface of V (that is, $V|_M \in TM$), then (2.1) shows that the tangential part V^T on M is conformal on M with $\sigma|_M = \tau$.

References

- 1. Ahn, S.-S., Kim, D.-S. and Y.H. Kim, Totally umbilic Lorentzian submanifolds, J. Korean Math. Soc. 33 (1966 No. 3), 507-512.
- 2. Blair, D. E., On the zeros of a conformal vector field, Nagoya Math. J. 55 (1974), 1-3.
- 3. Chen, B.-Y., Geometry of submanifolds and its applications, Science University of Tokyo (1981).
- 4. Chen, B.-Y., Total mean curvature and submanifolds of finite type, World Scientific (1984).
- Kerbrat, Y., Transformations conformes des varietes pseudo-riemanniannes, J. Diff. Geom., 11 (1976), 547-571.
- 6. Kerckhove, M.G., Conformal transformations of pseudo-Riemannian Einstein manifolds, Thesis, Brown University (1988).
- Kühnel, W. and Rademacher, H.B., Essential conformal fields in pseudo-Riemannian geometry, J.Math. Pures et Appl. 74 (1995), 453-481.
- 8. O'neill, B., Semi-Riemannian geometry with applications to relativity, Accademic Press, 1983.
- 9. Yano, K., The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957.