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1. Introduction

A totally umbilic submanifold of a pseudo-Riemannian mani-
fold is a submanifold whose first fundamental form and second fun-
damental form are propotional. An ordinary hypersphere S™(r)
of an affine (n + 1)-space of the Euclidean space E™ is the best
known example of totally umbilic submanifolds of E™. The totally
umbilic submanifolds of a Riemannian space form with constant
sectional curvature are well known ( [3,4]), For totally umbilic
submanifolds of pseudo-Riemannian space form, see [1] and [8].

An infinitesimal conformal transformation, or conformal vector
field on a pseudo-Riemannian manifold (M, g) is a vector field V
on M satisfying £y g = 20¢, where £ denotes the Lie derivative
on M and o is a smooth function. If (M, g) is a totally umbilic
submanifold of a pseudo-Riemannian manifold (M, §), then it is
well-known that for any conformal vector field V on M, the tan-
gential part V7 of V on M becomes a conformal vector field on
M (Proposition in § 2).

In this note we prove the converse of the above proposition for
a hypersurface of a pseudo-Riemannian space form M?*1(¢) with
constant sectional curvature ¢.
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2. Main Theorem

On a pseudo-Riemannian manifold (M, g) a vector field V is
called conformal if it preserves the conformal class of the metric :

Lvg = 209

for some function o.

Recall that by definition £y g(X,Y) = g(VxV,Y) + g(X,Vy V)
for arbitrary tangent vectors X,Y where V denotes the Levi-civita
connection. Necessarily the function ¢ is 2div(V'), where div(V)
denotes the divergence of the vector field V.

PROPOSITION. Let (M™, g) be a totally umbilic submanifold of
a pseudo-Riemannian space (M™,§). If V is a conformal vector
field on M, then the tangential part VT of V on M is a conformal
vector field on M.

proof. Let VT and V'V be the tangential and normal part of V
on M, respectively. Then since for all X, Y € TM

Lvi(X,Y) = g(VxV,Y) + §(X,VyV)
=g(VxVT,Y)+§(X, VyVT) + 5(VxVN,Y) + §(X, Vy VD),

we obtain from the hypothesis that

Lvi(X,Y) = g(VxVT,Y) +g(X,VyVT) - 25(VN H)g(X,Y)
= Lyrg(X,Y) - 2g(V,H)g(X,Y).

Hence we see that for all X, Y ¢ TM

L Serg(6Y) = Sva(X,¥) + 250V H)g(X,Y),
(1) — 20 + 3(V, H)}g(X, Y),

where no is the divergence of V on M. This completes the proof.

Now for a hypersurface of a pseudo-Riemannian space form we
prove the converse as follows :
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THEOREM. Let (M™,g) be a connected hypersurface of a pseu-
do-Riemannian space form (M7"*1() , ). Suppose that M carries
a conformal vector field V' with £y § = 20§ of which the tangential
part VT on M becomes a conformal vector field with £y,rg = 27g.
If the restriction o|p of o on M is not identically equal to T, then
(M™, g) is a totally umbilic and not totally geodesic submanifold
of (MJ*1(2), 9).

proof. As in the proof of the above proposition, we obtain
(2:2) Lyrg(X,Y) = £vg(X,Y) + 2§(V, h(X,Y))

for all g( , Y € TM, where h is the second fundamental form of
M in M. From the hypothesis and from (2.2) we see that for all
X, YeTM

(2.3) 3(V,h(X,Y)) = (1 — 0)9(X,Y).

We let U = {p € M|o(p) # 7(p)}, then U is a nonempty open set.
And (2.3) shows that U is totally umbilic with mean curvature
vector field H = —<1‘;‘f>—§ , where £ a locally defined unit normal
vector field on M with §(£,£) = ¢ = +1. Hence by Codazzi equa-
tion we see that for each connected component U; of U, there
exists a nonzero constant a; which satisfies r — o = a; < V,£ >
and H = q;£ on U;. Furthermore, each U; has constant sectional
curvature c; = ¢ + €a?. Since V is a conformal vector field on a
space form M7 *!(), the divergence (n + 1)o satisfies ([6,9])

(2.4) VxVo = ~éoX

for all vector field X on M, where Vo denotes the gradient of o
on M. Analogously, on each U;, 7 satisfies

(2.5) VxVr=-¢rX

for all vector field X on U;.
From (2.4), it is easy to show that on each U;

(2.6) VxVo = —-pX
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for all vector field X on U;, where we denote by ¢ and Vo the
function éo — ea; < Vo,£ > and the gradient of the restriction
o|m on Ui, respectively. From (2.6) it follows that for all vector
fields X,Y on U;

(2.7) R(X,Y)Vo =<Y, Vo> X- < X,Vp>Y,

where R is the Riemann curvature tensor of (M™, g). Since U; has
constant sectional curvature ¢;, (2.7) shows that Vy = ¢; Vo, that
is, ¢ = ¢;0 +b; for some constant b;. Hence (2.6) may be rewritten
as follows :

(2.8) VxVo = —(cio+b;)X

for all vector fields X on U;. Thus from (2.5) and (2.8) we have
for all tangent vector fields X on U;

(2.9) VxV(r-o)=—{ci(t — o) - b} X.

Now suppose that the interior open set W of U° is not empty.
Then on W, hence on the closure W of W we have

(2.10) r—o0=0, V(ir-o)=0, VxV(r—o)=0.

Since W is a proper subset of M, there exists at least one com-
ponent U; of U of which closure intersects W. For such U;, (2.9)
and (2.10) show that b, = 0. By the same argument as above, it
may be proven that b; is trivial for all i. If U; intersects Uj, then
on U; U U M has mean curvature vector field H = a;§ = a;§, and
has constant sectional curvature, ¢; = c¢;. This implies that if we
let A; denote a connected component of the complement of W,
then we have for all vectors X on A;

(2.11) VxV(r—0)=—ci(r - 0)X,

where ¢; denotes the constant sectional curvature on A;. For a
fixed point p in the boundary of W, we consider a normal neighbor-
hood N about p. Then on N, there exists a point g of U. Since U is



Totally Umbilic Hypersurfaces of a Space Form 165

contained in the complement of W, g lies in a component A;. Let
7v(t) denote the unique geodesic in N with v(0) = p and (1) = ¢,
and let ¢, denote the infimum of ¢ which satisfies v([t,1]) C A;.
Then, since (t,) lies in the boundary of W, (1 — o) and V(7 — o)
vanish at «y(t,), respectively. Hence (2.11) with Proposition 2.1 in
[7] shows that T — o vanishes identically on v([t,, 1]), in particu-
lar, (7 — o) vanishes at ¢ in U. This contradiction shows that the
interior open set W of U¢ is empty, that is, the closure U of U
is the whole hypersurface M. This, by continuity, completes the
proof.

REMARK. If M™ is a totally geodesic hypersurface or an inte-
gral hypersurface of V (thatis, V|p € TM ), then (2.1) shows that
the tangential part VT on M is conformal on M with ol = T.
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