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ON SUBMANIFOLDS OF ALMOST PSEUDO

SYMMETRIC MANIFOLDS

Jaeman Kim

Abstract. The object of the present paper is to study a decom-
posable (APS)n and hypersurfaces of (APS)n. Also, the existence
of a decomposable (APS)n is ensured by a proper example.

1. Introduction

In 1967, Sen and Chaki [6] studied certain curvature restrictions on a
certain kind of conformally flat manifold of class one and they obtained
the following expressions of the covariant derivative of curvature tensor
R:

(∇XR)(Y,Z, V,W ) =2A(X)R(Y, Z, V,W ) + A(Y )R(X,Z, V,W )

+ A(Z)R(Y,X, V,W ) + A(V )R(Y,Z,X,W )

+ A(W )R(Y, Z, V,X),

where A is a nowhere vanishing 1-form. Later in 1987, Chaki [1] called
the manifold whose curvature tensor satisfies the above relation as a
pseudo symmetric manifold. If A = 0, then the manifold reduces to
a symmetric manifold in the sense of Cartan. A non-flat Riemannian
manifold (Mn, g) (n ≥ 3) is said to be almost pseudo symmetric if its
curvature tensor R of type (0,4) satisfies the condition

(∇XR)(Y,Z, V,W ) = [A(X) + B(X)]R(Y, Z, V,W )

+ A(Y )R(X,Z, V,W ) + A(Z)R(Y,X, V,W )

+ A(V )R(Y,Z,X,W ) + A(W )R(Y, Z, V,X),

(1.1)

where A and B are nowhere vanishing 1-forms. An n-dimensional almost
pseudo symmetric manifold is denoted by (APS)n. In [3], (APS)n was
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introduced by De and Gazi, and they showed the physical significance
of such a manifold in the general theory of relativity. Moreover, they
proved its existence by several examples. If A = B in (1.1), then the
manifold reduces to a pseudo symmetric manifold. The purpose of this
paper is to investigate some properties of a decomposable (APS)n and
hypersurfaces of (APS)n. Section 2 is concerned with preliminaries.
Section 3 deals with a study of hypersurfaces of (APS)n. In the last
section, we study a decomposable (APS)n and provide a proper example
of a decomposable (APS)n.

2. Preliminaries

Let (Mn, g) be an n-dimensional Riemannian manifold covered by a
system of coordinate neighborhoods {U ; yα} and (M̄n−1, ḡ) a hypersur-
face of (Mn, g) covered by a system of coordinate neighborhoods {V ;xi}.
Let yα = yα(xi) be the parametric representation of the hypersurface
M̄n−1 in Mn, where Greek indices take the values 1, 2, ..., n and Latin
indices take the values 1, 2, ..., n− 1. Then we have

ḡij = gαβ
∂yα

∂xi
∂yβ

∂xj
.

Here we adopt the Einstein convention, that is, when an index variable
appears once in an upper and once in a lower position in a term, it
implies summation of that term over all the values of the index. Let Nα

be a local unit normal to (M̄n−1, ḡ). Then we have the relations

gαβN
α∂y

β

∂xj
= 0, gαβN

αNβ = 1, gαβ = ḡij
∂yα

∂xi
∂yβ

∂xj
+ NαNβ.

The structure equations of Gauss, Codazzi for a hypersurface (M̄n−1, ḡ)
of (Mn, g) can be respectively written as

R̄ijkl = Rαβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
+ ω̄ilω̄jk − ω̄ikω̄jl, (2.1)

Rαβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ = ω̄jk;i − ω̄ik;j , (2.2)

where R̄ijkl and Rαβγδ are the curvature tensors of (M̄n−1, ḡ) and (Mn, g)
respectively, and ω̄ij is the second fundamental form of (M̄n−1, ḡ).

The hypersurface (M̄n−1, ḡ) is said to be a totally umbilic hypersur-
face of (Mn, g) [2] if its second fundamental form ω̄ij satisfies

ω̄ij = Hḡij , (
∂yα

∂xi
);j = ḡijHNα, (2.3)



On submanifolds of almost pseudo symmetric manifolds 523

where H denotes the mean curvature of (M̄n−1, ḡ) defined by H =
1

n−1 ḡ
ijω̄ij , and semicolon “;” indicates covariant differentiation. In par-

ticular, if H=0, then the totally umbilic hypersurface (M̄n−1, ḡ) is called
a totally geodesic hypersurface of (Mn, g) [2]. The equations of Wein-
garten, Gauss and Codazzi for a totally umbilic hypersurface (M̄n−1, ḡ)
of (Mn, g) are respectively obtained as

Nα
;i = −H∂yα

∂xi
, (2.4)

R̄ijkl = Rαβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
+ H2(ḡilḡjk − ḡikḡjl), (2.5)

Rαβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ = H;iḡjk −H;j ḡik. (2.6)

3. Hypersurfaces of (APS)n

In this section we deal with some hypersurfaces of (APS)n. At first,
we can state the following Lemma which we need for the proofs of main
results in this section, and for the sake of completeness, we have provided
the proof of this one which was already appeared in [5].

Lemma 3.1 ([5]). Let (M̄n−1, ḡ) be a totally umbilic hypersurface
of (Mn, g). Then we have

R̄ijkl;p =Rαβγδ;µ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
∂yµ

∂xp
+ HH;i(ḡlpḡjk − ḡkpḡjl)

+ HH;j(ḡilḡkp − ḡikḡlp) + HH;k(ḡjpḡli − ḡipḡlj)

+ HH;l(ḡipḡkj − ḡjpḡki) + 2HH;p(ḡilḡjk − ḡikḡjl),

(3.1)

Rαβγδ;µ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ ∂y

µ

∂xp
+ H(RαβγδN

α∂y
β

∂xj
∂yγ

∂xk
N δ ḡip

+ Rαβγδ
∂yα

∂xi
Nβ ∂y

γ

∂xk
N δ ḡjp + Rαβγδ

∂yα

∂xi
∂yβ

∂xj
NγN δ ḡkp

−Rαβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xp
) = H;ipḡjk −H;jpḡik.

(3.2)
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Proof. Differentiating (2.5) covariantly, we have

R̄ijkl;p =Rαβγδ;µ
∂yµ

∂xp
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
+ Rαβγδ(

∂yα

∂xi
);p

∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl

+ Rαβγδ
∂yα

∂xi
(
∂yβ

∂xj
);p

∂yγ

∂xk
∂yδ

∂xl
+ Rαβγδ

∂yα

∂xi
∂yβ

∂xj
(
∂yγ

∂xk
);p

∂yδ

∂xl

+ Rαβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
(
∂yδ

∂xl
);p + 2HH;p(ḡilḡjk − ḡikḡjl).

By virtue of (2.3) and the last relation, we obtain

R̄ijkl;p =Rαβγδ;µ
∂yµ

∂xp
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
+ ḡipHRαβγδN

α∂y
β

∂xj
∂yγ

∂xk
∂yδ

∂xl

+ ḡjpHRαβγδ
∂yα

∂xi
Nβ ∂y

γ

∂xk
∂yδ

∂xl
+ ḡkpHRαβγδ

∂yα

∂xi
∂yβ

∂xj
Nγ ∂y

δ

∂xl

+ ḡlpHRαβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ + 2HH;p(ḡilḡjk − ḡikḡjl).

It follows from (2.6) that the last relation reduces to

R̄ijkl;p =Rαβγδ;µ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
∂yµ

∂xp
+ HH;i(ḡlpḡjk − ḡkpḡjl)

+ HH;j(ḡilḡkp − ḡikḡlp) + HH;k(ḡjpḡli − ḡipḡlj)

+ HH;l(ḡipḡkj − ḡjpḡki) + 2HH;p(ḡilḡjk − ḡikḡjl).

On the other hand, differentiating (2.6) covariantly, we get

Rαβγδ;µ
∂yµ

∂xp
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ + Rαβγδ(

∂yα

∂xi
);p

∂yβ

∂xj
∂yγ

∂xk
N δ

+ Rαβγδ
∂yα

∂xi
(
∂yβ

∂xj
);p

∂yγ

∂xk
N δ + Rαβγδ

∂yα

∂xi
∂yβ

∂xj
(
∂yγ

∂xk
);pN

δ

+ Rαβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ

;p = H;ipḡjk −H;jpḡik.

Taking account of (2.3), (2.4) and the last relation, we have

Rαβγδ;µ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ ∂y

µ

∂xp
+ H(RαβγδN

α∂y
β

∂xj
∂yγ

∂xk
N δ ḡip

+ Rαβγδ
∂yα

∂xi
Nβ ∂y

γ

∂xk
N δ ḡjp + Rαβγδ

∂yα

∂xi
∂yβ

∂xj
NγN δ ḡkp

−Rαβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xp
) = H;ipḡjk −H;jpḡik.

This completes the proof.
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Theorem 3.2. Let (Mn, g) be an (APS)n. If (M̄n−1, ḡ) is a totally
geodesic hypersurface of (Mn, g), then the manifold (M̄n−1, ḡ) is an
(APS)n−1.

Proof. By virtue of H = 0, we have from (3.1)

R̄ijkl;p = Rαβγδ;µ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
∂yµ

∂xp
.

Since (Mn, g) is an (APS)n, the next relation yields from (1.1)

R̄ijkl;p = (Aµ + Bµ)Rαβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
∂yµ

∂xp

+AαRµβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
∂yµ

∂xp
+ AβRαµγδ

∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
∂yµ

∂xp

+AγRαβµδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
∂yµ

∂xp
+ AδRαβγµ

∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
∂yµ

∂xp
.

Because of (2.5) and H = 0, the last relation reduces to

R̄ijkl;p = (Ap + Bp)R̄ijkl + AiR̄pjkl + AjR̄ipkl + AkR̄ijpl + AlR̄ijkp,

showing that the manifold is an (APS)n−1. The proof is completed.

Note that A] is a vector field associated with the 1-form A in (1.1),
that is, g(A], V ) = A(V ). Now we can state the following.

Theorem 3.3. Let (Mn, g) be an (APS)n. If (M̄n−1, ḡ) is a totally
geodesic hypersurface of (Mn, g), then we have g(A], N) = 0.

Proof. Taking account of H = 0, we obtain from (3.2)

Rαβγδ;µ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ ∂y

µ

∂xp
= 0.

Since (Mn, g) is an (APS)n, the next relation yields from (1.1)

(Aµ+Bµ)Rαβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ ∂y

µ

∂xp
+ AαRµβγδ

∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ ∂y

µ

∂xp

+ AβRαµγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ ∂y

µ

∂xp
+ AγRαβµδ

∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ ∂y

µ

∂xp

+ AδRαβγµ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ ∂y

µ

∂xp
= 0.

Because of (2.6) and H = 0, the last relation reduces to

AδN
δRαβγµ

∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yµ

∂xp
= 0.
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It follows from (2.5) and H = 0 that

AδN
δR̄ijkp = 0,

which implies that either AδN
δ = 0 or R̄ijkp = 0. According to Theo-

rem 3.2 and the definition of (APS)n−1, (M̄n−1, ḡ) should be non-flat.
Therefore we have AδN

δ = 0 and this completes the proof.

4. Decomposable (APS)n

Let (Mn, g) be a Riemannian product manifold (Mp ×Mn−p, ĝ + g̃).
In local coordinates, we adopt the Latin indices (resp. the Greek in-
dices) for tensor components which are constructed on (Mp, ĝ) (resp.
(Mn−p, g̃)). Therefore, the Latin indices take the values from 1, ..., p
whereas the Greek indices run over the range p + 1, ..., n. Now we can
state the following.

Theorem 4.1. Let a Riemannian manifold

(Mn, g) = (Mp ×Mn−p, ĝ + g̃), p ≥ 2

be an (APS)n, n ≥ 4. Then either one decomposition manifold (Mp, ĝ)
is flat or the other decomposition manifold (Mn−p, g̃) is locally symmet-
ric.

Proof. Since any tensor components of R and its covariant derivatives
with both Latin and Greek indices together should be zero, we have from
(1.1) and Rijkl;α = 0

0 = (Aα + Bα)Rijkl. (4.1)

Similarly, from (1.1) and Rαjkl;i = 0 it follows that

0 = AαRijkl. (4.2)

Taking account of (4.1) and (4.2), we get either

Aα = Bα = 0 (4.3)

or

Rijkl = 0, (4.4)

From (1.1) and (4.3) it follows that

Rαβγδ;µ = 0.

Therefore we show that one decomposition manifold (Mp, ĝ) is flat or
the other decomposition manifold (Mn−p, g̃) is locally symmetric. This
completes the proof.
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Example 4.2. Let (Rn+4
+ , g) (n ≥ 2) be a Riemannian manifold

given by
Rn+4

+ = {(x1, x2, x3, x4, ..., xn+4)|x4 > 0}
and

g = (x4)
4
3 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2 + (dx5)2 + ... + (dxn+4)2.

This kind of metric was appeared in [4]. In the metric described as
above, the only nonvanishing components for the Christoffel symbols
Γkij , the curvature tensors Rijkl and their covariant derivatives Rijkl;p

are

Γ1
14 = Γ2

24 = Γ3
34 =

2

3x4
,

Γ4
11 = Γ4

22 = Γ4
33 =

−2

3
(x4)

1
3 ,

R1221 = R1331 = R2332 =
4

9
(x4)

2
3 ,

R1441 = R2442 = R3443 =
−2

9(x4)
2
3

,

R1221;4 = R1331;4 = R2332;4 =
−24

27
(x4)−

1
3 ,

R1441;4 = R2442;4 = R3443;4 =
12

27
(x4)−

5
3 .

Let us define the associated 1-forms A and B of (1.1) on (Rn+4
+ , g) as

follows:

A1 =
1

x4
, A2 =

2

x4
, A3 =

3

x4
, A4 = ... = An+4 = 0,

B1 =
−3

x4
, B2 =

−6

x4
, B3 =

−9

x4
, B4 =

−2

x4
, B5 = · · · = Bn+4 = 0.

It is easy to see that (1.1) holds on (Rn+4
+ , g). For instance,

R1221;4 =
−24

27
(x4)−

1
3

= (A4 + B4)R1221 + A1R4221 + A2R1421 + A2R1241 + A1R1224,

R1441;4 =
12

27
(x4)−

5
3

= (A4 + B4)R1441 + A1R4441 + A4R1441 + A4R1441 + A1R1444.

Hence the Riemannian manifold (Rn+4
+ , g) = (R4

+ ×Rn, g̃ + ĝ) is a
decomposable (APS)n+4 with a flat decomposition manifold (Rn, ĝ).
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