• 제목/요약/키워드: tunneling field-effect transistor

검색결과 47건 처리시간 0.021초

Rigorous Design of 22-nm Node 4-Terminal SOI FinFETs for Reliable Low Standby Power Operation with Semi-empirical Parameters

  • Cho, Seong-Jae;O'uchi, Shinichi;Endo, Kazuhiko;Kim, Sang-Wan;Son, Young-Hwan;Kang, In-Man;Masahara, Meishoku;Harris, James S.Jr;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권4호
    • /
    • pp.265-275
    • /
    • 2010
  • In this work, reliable methodology for device design is presented. Based on this method, the underlap length has been optimized for minimizing the gateinduced drain leakage (GIDL) in a 22-nm node 4-terminal (4-T) silicon-on-insulator (SOI) fin-shaped field effect transistor (FinFET) by TCAD simulation. In order to examine the effects of underlap length on GIDL more realistically, doping profile of the source and drain (S/D) junctions, carrier lifetimes, and the parameters for a band-to-band tunneling (BTBT) model have been experimentally extracted from the devices of 90-nm channel length as well as pnjunction test element groups (TEGs). It was confirmed that the underlap length should be near 15 nm to suppress GIDL effectively for reliable low standby power (LSTP) operation.

Low Temperature Characteristics of Schottky Barrier Single Electron and Single Hole Transistors

  • Jang, Moongyu;Jun, Myungsim;Zyung, Taehyoung
    • ETRI Journal
    • /
    • 제34권6호
    • /
    • pp.950-953
    • /
    • 2012
  • Schottky barrier single electron transistors (SB-SETs) and Schottky barrier single hole transistors (SB-SHTs) are fabricated on a 20-nm thin silicon-on-insulator substrate incorporating e-beam lithography and a conventional CMOS process technique. Erbium- and platinum-silicide are used as the source and drain material for the SB-SET and SB-SHT, respectively. The manufactured SB-SET and SB-SHT show typical transistor behavior at room temperature with a high drive current of $550{\mu}A/{\mu}m$ and $-376{\mu}A/{\mu}m$, respectively. At 7 K, these devices show SET and SHT characteristics. For the SB-SHT case, the oscillation period is 0.22 V, and the estimated quantum dot size is 16.8 nm. The transconductance is $0.05{\mu}S$ and $1.2{\mu}S$ for the SB-SET and SB-SHT, respectively. In the SB-SET and SB-SHT, a high transconductance can be easily achieved as the silicided electrode eliminates a parasitic resistance. Moreover, the SB-SET and SB-SHT can be operated as a conventional field-effect transistor (FET) and SET/SHT depending on the bias conditions, which is very promising for SET/FET hybrid applications. This work is the first report on the successful operations of SET/SHT in Schottky barrier devices.

粒界에서의 터널링으로 解析한 薄膜트랜지스터의 電流-電壓 特性 (I-V Characteristics of the TFT Analyzed by Tunneling in Grain Boundaries)

  • 마대영
    • 대한전자공학회논문지
    • /
    • 제26권6호
    • /
    • pp.23-29
    • /
    • 1989
  • 多結晶 薄膜트랜지스터의 電界效果 解析을 위한 物理的인 모델을 제시하였다. 본 논문의 모델에서는 粒子(grain) 하나를 單結晶 트랜지스터로 粒界(grain boundary)를 電位障壁을 갖는 絶緣體로 가정하였다. 따라서 多結晶 薄膜트랜지스터 粒子인 單結晶 트랜지스터들이 粒界를 경계로 직렬연결 되어 있는 것으로 간주하였으며, 粒子에 흐르는 電流는 gradual channel 근사식으로 또 粒界에 흐르는 電流는 터널링 이론으로 계산하였다. 出力特性과 비교하므로써 채널에서의 電位, 電界분포 등을 구하였으며 이결과들을 통해 본 모델을 검토하였다. 본 논문에서 제시한 다결정박막트랜지스터의 전도모델이 문턱전압이상의 素子동작해석에 타당함을 밝혔다.

  • PDF

Simulation Study on a Quasi Fermi Energy Movement in the Floating Body Region of FITET (Field-induced Inter-band Tunneling Effect Transistor)

  • Song, Seung-Hwan;Kim, Kyung-Rok;Kang, Sang-Woo;Kim, Jin-Ho;Kang, Kwon-Chil;Shin, Hyung-Cheol;Lee, Jong-Duk;Park, Byung-Gook
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.679-682
    • /
    • 2005
  • Negative-differential conductance (NDC) characteristics as well as negative-differential trans-conductance (NDT) characteristics have been observed in the room temperature I-V characteristics of Field-induced Inter-band Tunneling Effect Transistors (FITETs). These characteristics have been explained with inter-band tunneling physics, from which, inter-band tunneling current flows when the energy bands of degenerately doped regions align, and it does not flow when they don't. FITET is an SOI device and the body region is not directly connected to the external terminal. Therefore, Fermi energy in the body region is determined by electrical coupling among four regions - gate, source, drain and substrate. So, a quasi Fermi energy of the majority carriers in the floating body region can be changed by external voltages, and this causes the energy band movements in the body region, which determine whether the energy bands between degenerately doped junctions aligns or not. This is a key point for an explanation of NDT and NDC characteristics. In this paper, a quasi Fermi energy movement in the floating body region of FITET was investigated by a device simulation. This result was applied for the description of relation between quasi Fermi energy in the body region and external gate bias voltage.

  • PDF

Triple Material Surrounding Gate (TMSG) Nanoscale Tunnel FET-Analytical Modeling and Simulation

  • Vanitha, P.;Balamurugan, N.B.;Priya, G. Lakshmi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권6호
    • /
    • pp.585-593
    • /
    • 2015
  • In the nanoscale regime, many multigate devices are explored to reduce their size further and to enhance their performance. In this paper, design of a novel device called, Triple Material Surrounding Gate Tunnel Field effect transistor (TMSGTFET) has been developed and proposed. The advantages of surrounding gate and tunnel FET are combined to form a new structure. The gate material surrounding the device is replaced by three gate materials of different work functions in order to curb the short channel effects. A 2-D analytical modeling of the surface potential, lateral electric field, vertical electric field and drain current of the device is done, and the results are discussed. A step up potential profile is obtained which screens the drain potential, thus reducing the drain control over the channel. This results in appreciable diminishing of short channel effects and hot carrier effects. The proposed model also shows improved ON current. The excellent device characteristics predicted by the model are validated using TCAD simulation, thus ensuring the accuracy of our model.

Device and Circuit Level Performance Comparison of Tunnel FET Architectures and Impact of Heterogeneous Gate Dielectric

  • Narang, Rakhi;Saxena, Manoj;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권3호
    • /
    • pp.224-236
    • /
    • 2013
  • This work presents a comparative study of four Double Gate tunnel FET (DG-TFET) architectures: conventional p-i-n DG-TFET, p-n-p-n DG-TFET, a gate dielectric engineered Heterogate (HG) p-i-n DG-TFET and a new device architecture with the merits of both Hetero Gate and p-n-p-n, i.e. HG p-n-p-n DG-TFET. It has been shown that, the problem of high gate capacitance along with low ON current for a p-i-n TFET, which severely hampers the circuit performance of TFET can be overcome by using a p-n-p-n TFET with a dielectric engineered Hetero-gate architecture (i.e. HG p-n-p-n). P-n-p-n architecture improves the ON current and the heterogeneous dielectric helps in reducing the gate capacitance and suppressing the ambipolar behavior. Moreover, the HG architecture does not degrade the output characteristics, unlike the gate drain underlap architecture, and effectively reduces the gate capacitance.

Solution-Processed Inorganic Thin Film Transistors Fabricated from Butylamine-Capped Indium-Doped Zinc Oxide Nanocrystals

  • Pham, Hien Thu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.494-500
    • /
    • 2014
  • Indium-doped zinc oxide nanocrystals (IZO NCs), capped with stearic acid (SA) of different sizes, were synthesized using a hot injection method in a noncoordinating solvent 1-octadecene (ODE). The ligand exchange process was employed to modify the surface of IZO NCs by replacing the longer-chain ligand of stearic acid with the shorter-chain ligand of butylamine (BA). It should be noted that the ligand-exchange percentage was observed to be 75%. The change of particle size, morphology, and crystal structures were obtained using a field emission scanning electron microscope (FE-SEM) and X-ray diffraction pattern results. In our study, the 5 nm and 10 nm IZO NCs capped with stearic acid (SA-IZO) were ligand-exchanged with butylamine (BA), and were then spin-coated on a thermal oxide ($SiO_2$) gate insulator to fabricate a thin film transistor (TFT) device. The films were then annealed at various temperatures: $350^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$, and $600^{\circ}C$. All samples showed semiconducting behavior and exhibited n-channel TFT. Curing temperature dependent on mobility was observed. Interestingly, mobility decreases with the increasing size of NCs from 5 to 10 nm. Miller-Abrahams hopping formalism was employed to explain the hopping mechanism insight our IZO NC films. By focusing on the effect of size, different curing temperatures, electron coupling, tunneling rate, and inter-NC separation, we found that the decrease in electron mobility for larger NCs was due to smaller electronic coupling.