Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.2.494

Solution-Processed Inorganic Thin Film Transistors Fabricated from Butylamine-Capped Indium-Doped Zinc Oxide Nanocrystals  

Pham, Hien Thu (Department of Chemistry, Chonnam National University)
Jeong, Hyun-Dam (Department of Chemistry, Chonnam National University)
Publication Information
Abstract
Indium-doped zinc oxide nanocrystals (IZO NCs), capped with stearic acid (SA) of different sizes, were synthesized using a hot injection method in a noncoordinating solvent 1-octadecene (ODE). The ligand exchange process was employed to modify the surface of IZO NCs by replacing the longer-chain ligand of stearic acid with the shorter-chain ligand of butylamine (BA). It should be noted that the ligand-exchange percentage was observed to be 75%. The change of particle size, morphology, and crystal structures were obtained using a field emission scanning electron microscope (FE-SEM) and X-ray diffraction pattern results. In our study, the 5 nm and 10 nm IZO NCs capped with stearic acid (SA-IZO) were ligand-exchanged with butylamine (BA), and were then spin-coated on a thermal oxide ($SiO_2$) gate insulator to fabricate a thin film transistor (TFT) device. The films were then annealed at various temperatures: $350^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$, and $600^{\circ}C$. All samples showed semiconducting behavior and exhibited n-channel TFT. Curing temperature dependent on mobility was observed. Interestingly, mobility decreases with the increasing size of NCs from 5 to 10 nm. Miller-Abrahams hopping formalism was employed to explain the hopping mechanism insight our IZO NC films. By focusing on the effect of size, different curing temperatures, electron coupling, tunneling rate, and inter-NC separation, we found that the decrease in electron mobility for larger NCs was due to smaller electronic coupling.
Keywords
Indium-doped zinc oxide; Nanocrystal; Thin film transistor; Solution process; Coupling energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fortunato, E.; Barquinha, P.; Martins, R. Adv. Mater. 2012, 24, 2945.   DOI   ScienceOn
2 Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Nature 2004, 432, 488.   DOI   ScienceOn
3 Fuji, M.; Ishikawa, Y.; Ishihara, R.; Cingel, J.; Mofrad, M. T.; Horita, M.; Uraoka, Y. Appl. Phys. Lett. 2013, 102, 122107.   DOI   ScienceOn
4 Fortunato, E.; Barquinha, P.; Pimentel, A.; Pereira, L.; Goncalves, G.; Martins, R. Phys. Stat. Sol 1 2007, R34.
5 Park, K. B.; Seon, J. B.; Kim, G. H.; Yang, M.; Koo, B.; Kim, H. J.; Ryu, M. K.; Lee, S. Y. IEEE Electron Device Lett. 2010, 31, 311.   DOI   ScienceOn
6 Wang, Q. L.; Yang, Y. F.; He, H. P.; Chen, Z. Z.; Jin, Y. Z. Nanoscale Res Lett. 2010, 5, 882.   DOI   ScienceOn
7 Narayanaswamy, A.; Xu, H.; Pradhan, N.; Kim, M.; Peng, X. J. Am. Chem. Soc. 2006, 128, 10310.   DOI   ScienceOn
8 Vanmaekelbergh, D.; Liljeroth, P. Chem. Soc. Rev. 2005, 34, 299.   DOI   ScienceOn
9 Dimitri V. T.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110, 389.   DOI   ScienceOn
10 Zhang, D.; Song, J.; Zhang, J.; Wang, Y.; Zhang, S.; Miao, X.; Cryst. Eng. Comm. 2013, 15, 2532.   DOI   ScienceOn
11 Sun, B.; Sirringhaus, H. J. Am. Chem. Soc. 2006, 128, 16231.   DOI   ScienceOn
12 Hanrath, T. J. Vac. Sci. Technol. A 2012, 30, 030802-1.
13 Lee, J.; Choi, O.; Sim, E. J. Phys. Chem. Lett. 2012, 3, 714.   DOI   ScienceOn
14 Miller, A.; Abrahams, E. Phys. Review 1960, 120, 745.   DOI
15 Liu, Y.; Gibbs, M.; Puthussery, J.; Gaik, S.; Ihly, R.; Hillhouse, H. W.; Law, M. Nano. Lett. 2010, 10, 1960.   DOI   ScienceOn