• Title/Summary/Keyword: triode-type structure

Search Result 18, Processing Time 0.024 seconds

Simulation of the Strip Type CNT Field Emitter Triode Structure (띠 모양의 에미터를 가지는 탄소나노튜브 삼전극 전계방출 디스플레이 소자의 시뮬레이션)

  • 류성룡;이태동;김영길;변창우;박종원;고성우;천현태;고남제
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1023-1028
    • /
    • 2003
  • The field emission characteristics are studied by simulation for carbon nanotube triode structures with a strip-shaped emitter and a gate hole aligned with it. Two structures, one with double-edge and the other with single edge are analyzed. They show good emission characteristics. Emissions of electrons are concentrated on the edges of emitter and the emitted current increases as the distance between emitter and gate decreases. For single-edged emitter, the emitted electrons form a narow strip-shaped beam which has a good directionality. These triode structures have advantages in that they can be easily fabricated and aligned for assembly.

Study of Surface Treatments on Field Emission Properties for Triode-Type Carbon Nanotube Cathodes (3극형 탄소나노튜브 캐소드의 전계방출 특성에 미치는 표면처리에 관한 연구)

  • Lee, Ji-Eon;An, Young-Je;Lee, Je-Hyun;Chung, Won-Sub;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.173-178
    • /
    • 2007
  • Carbon nanotube cathodes(CNT cathodes) with a trench structure similar to gated structure of triode-type cathode were fabricated by a screen printing method using multi-walled carbon nanotubes. The effects of surface treatments on CNT cathodes were investigated for high efficiency field emission displays(FEDs). A liquid method easily removed the organic residue and protruded the CNTs. Field emission properties were measured by using a diode-type mode. The liquid method produced a turn-on field of $1.4V/{\mu}m$. The emission current density was measured about $3.1mA/cm^{2}$ at the electric field of $3V/{\mu}m$. The liquid method showed a high potential applicable to the surface treatment for triode-type FEDs.

Fabrication of Triode Type Field Emission Device Using Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition (열 화학 기상 증착법을 이용한 삼극관 구조의 탄소 나노 튜브 전계 방출 소자의 제조)

  • Yu W. J.;Cho Y. S.;Choi G. S.;Kim D. J.
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.542-546
    • /
    • 2004
  • We report a new fabrication process for high performance triode type CNT field emitters and their superior electrical properties. The CNT-based triode-type field emitter structure was fabricated by the conventional semiconductor processes. The keys of the fabrication process are spin-on-glass coating and trim-and-leveling of the carbon nanotubes grown in trench structures by employing a chemical mechanical polishing process. They lead to strong adhesion and a uniform distance from the carbon nanotube tips to the electrode. The measured emission property of the arrays showed a remarkably uniform and high current density. The gate leakage current could be remarkably reduced by coating of thin $SiO_{2}$ insulating layer over the gate metal. The field enhancement factor(${\beta}$) and emission area(${\alpha}$) were calculated from the F-N plot. This process can be applicable to fabrication of high power CNT vacuum transistors with good electrical performance.

A New Structure of Triode-type CNT-FEAs for Enhanced Electron Emission and Beam Focusing

  • Jun, Pil-Goo;Kwak, Byung-Hwak;Noh, Hyung-Wook;Lee, Soo-Myun;Uh, Hyung-Soo;Park, Sang-Sik;Ko, Sung-Woo;Cho, Euo-Sik;Lee, Jong-Duk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.456-458
    • /
    • 2004
  • We proposed a novel triode-type carbon nanotube field emitter arrays in which extracted gate is surrounded by CNT emitters. We carried out 3-dimensional numerical calculations of electrostatic potential for the proposed CNT-FEAs using the finite element method and compared the results with those obtained from the structure of conventional CNT-FEAs. It was found that the proposed structure could reduce the turn-on voltage for electron emission and improve beam focusing.

  • PDF

Carbon-Nanotubes Grown from Spin-Coated Nanoparticles for Field-Emission Displays

  • Kim, Do-Yoon;Yoo, Ji-Beom;Han, In-Taek;Kim, Ha-Jin;Kim, Ha-Jong;Jin, Yong-Wan;Kim, Jong-Min
    • Journal of Information Display
    • /
    • v.6 no.2
    • /
    • pp.19-24
    • /
    • 2005
  • The density controlled carbon nanotubes (CNTs) are grown on the iron acetate nanoparticles by using the freeze-dry method. The iron-acetate [Fe(II)$(CH_3COO)_2$] solution is used to prepare the catalytic iron nanoparticles. The density of CNTs is controlled in order to enhance the field emission process. Furthermore, the patterning of the iron nanoparticle catalyst-layer for the fabrication of electronic devices is simply achieved by using alkaline solution, TMAH (tetramethylammonium hydroxide). We applied this patterning process of catalyst layer to form the electron emitter with under-gate type triode structure.

A novel in-situ vacuu encapsulted lateral field emitter triode (자체적으로 진공을 갖는 수평형 전계 방출 트라이오드)

  • 임무섭;박철민;한민구;최연익
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.65-71
    • /
    • 1996
  • A novel lateral field emitter triode has been designed and fabricated. It has self-vacuum environmets and low turn-on voltage, so that the chief problems of previous field emission devices such as additional vacuum sealing process and high turn-on voltage are settled. An in-situ vaccum encapsulation empolying recessed cavities by isotropic RIE (reactive ion etch) method and an electron beam evaporated molybdenum vacuum seals are implemented to fabricate the new field emitter triode. The device exhibits low turn-on voltage of 7V, stabel current density of 2.mu.A/tip at V$_{AC}$ = 30V, and high transconductance (g$_{m}$) of 1.7$\mu$S at V$_{AC}$ = 22V. The superb device characteristics are probably due to sub-micron dimension device structure and the pencil type lateral cathode tip employing upper and lower LOCOS oxidation.

  • PDF

Electrical characteristics of lateral poly0silicon field emission triode using LOCOS process

  • Lee, Jae-Hoon;Lee, Myoung-Bok;Park, Dong-Il;Ham, Sung-Ho;Lee, Jong-Hyun;Lee, Jung-Hee
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.38-42
    • /
    • 1999
  • Using the LOCOS process, we have fabricated the lateral type polysilicon field emission triodes with poly-Si/oxide/Si structure and investigated their current-voltage characteristics for three biasing modes of operation. The fabricated devices exhibit excellent electrical performances such as a relatively low turn-on anode voltage of 14 V at VGC = 0V, a stable and high emission current of 92${\mu}$A/triode over 90 hours, a small gate leakage current of 0.23 ${\mu}$A/triode and an outstanding transconductance of 57${\mu}$S/5triodes at VGC = 5V and VAC = 26V. these superior electrical operation is believed to be due to a large field enhancement effect, which is related to the sharp cathode tips produced by the LOCOS process as well as the high aspect ratio (height /radius ) of the cathode tip end.

  • PDF

The density control of carbon nanotubes using spin-coated nanoparticle and its application to the electron emitter with triode structure

  • Kim, Do-Yoon;Yoo, Ji-Beom;Berdinski, A.S.;Han, In-Taek;Kim, Ha-Jong;Jin, Yong-Wan;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1016-1019
    • /
    • 2005
  • We studied the density control of carbon nanotubes (CNTs) which were grown on the iron nanoparticles prepared from iron-acetate [$Fe(II)(CH_3COO)_2$] solution using freeze-dry method. The density of CNTs was controlled for the enhancement of field emission. The patterning process of iron-acetate catalyst-layer for the fabrication of electronic device was simply achieved by using alkaline solution, TMAH (tetramethylammonium hydroxide). We applied this patterning process of catalyst layer to formation of the electron emitter with under gate type triode structure.

  • PDF

The density control of carbon nanotubes using spin-coated nanoparticle and its application to the electron emitter with triode structure

  • Kim, Do-Yoon;Yoo, Ji-Beom;Berdinski, A.S.;Han, In-Taek;Kim, Ha-Jong;Jin, Yong-Wan;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1455-1458
    • /
    • 2005
  • We studied the density control of carbon nanotubes (CNTs) which were grown on the iron nanoparticles prepared from iron-acetate $[Fe(II)(CH_3COO)_2]$ solution using freeze-dry method. The density of CNTs was controlled for the enhancement of field emission. The patterning process of iron-acetate catalyst-layer for the fabrication of electronic device was simply achieved by using alkaline solution, TMAH (tetramethylammonium hydroxide). We applied this patterning process of catalyst layer to formation of the electron emitter with under-gate type triode structure.

  • PDF

Application of Nano-carbons in Field Emission Display (전계방출표시소자에서 나노 카본의 응용)

  • Kim, Kwang-Bok;Song, Yoon-Ho;Hwang, Chi-Sun;Jung, Han-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.76-79
    • /
    • 2003
  • The characteristic of single wall carbon nanotube (SW-CNT) and herringbone nano fiber (HB-CNF) emitters was described. SW-CNT synthesized by arc discharge and HB-CNF prepared by thermal CVD were mixed with binders and conductive materials, and then were formed by screen-printing process. In order to obtain efficient field emissions, the surface treatment of rubbing & peel-off was applied to the printed CNT and CNF emitters. The basic structure of FED was of a diode type through fully vacuum packaging. Also, we proposed a new triode type of field emitter using a mesh gate plate having tapered holes and could achieve the ideal triode properties with no gate leakage currents.

  • PDF