Browse > Article

Carbon-Nanotubes Grown from Spin-Coated Nanoparticles for Field-Emission Displays  

Kim, Do-Yoon (Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University)
Yoo, Ji-Beom (Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University)
Han, In-Taek (Materials Lab., Samsung Advanced Institute of Technology)
Kim, Ha-Jin (Materials Lab., Samsung Advanced Institute of Technology)
Kim, Ha-Jong (Materials Lab., Samsung Advanced Institute of Technology)
Jin, Yong-Wan (Materials Lab., Samsung Advanced Institute of Technology)
Kim, Jong-Min (Materials Lab., Samsung Advanced Institute of Technology)
Publication Information
Abstract
The density controlled carbon nanotubes (CNTs) are grown on the iron acetate nanoparticles by using the freeze-dry method. The iron-acetate [Fe(II)$(CH_3COO)_2$] solution is used to prepare the catalytic iron nanoparticles. The density of CNTs is controlled in order to enhance the field emission process. Furthermore, the patterning of the iron nanoparticle catalyst-layer for the fabrication of electronic devices is simply achieved by using alkaline solution, TMAH (tetramethylammonium hydroxide). We applied this patterning process of catalyst layer to form the electron emitter with under-gate type triode structure.
Keywords
CNTs; Undergate-type triode structure; Iron-acetate; freeze dry method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Croci, J.-M. Bonard, O. Noury, T. Stockli, and A. Chatelain, Chem. Yap. Deposition, 8, 89 (2002)
2 S. J. Oh, J. Zhang, Y. Cheng, H. Shimoda, and O. Zhou, Appl. Phys. Lett., 84, 3738 (2004)   DOI   ScienceOn
3 C. Ducati, I. Alexandrou, M. Chhowalla, J. Robertson, and G. A. J. Amaratunga, J. Appl. Phys., 95, 6387 (2004)   DOI   ScienceOn
4 Y. Murakami, Y. Miyauchi, and S. Maruyama, Chem. Phys. Lett., 377, 49 (2003)
5 S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Chem. Phys. Lett., 360, 229 (2002)
6 U.C. Fisher, and H.P. Zingsheim, J. Vac. Sci. Technol., 19, 881 (1981)
7 C. A. Bower, O. Zhou, Z. Wei, D. J. Werder, and J. Sungho, Appl. Phys. Lett., 77, 2767 (2000)
8 Ruth Y. Zhang, I. Amlani, J. Baker, John Tresek, Raymond K. Tsui, and P. Fejes, Nano Lett., 3, 731 (2003)   DOI   ScienceOn
9 R.M.H. New, R.F.W. Pease, and R.L. White, J. Vac. Sci. Technol. B, 13, 1089 (1995)   DOI   ScienceOn
10 C.A. Ross, Annu. Rev. Mater. Res., 31, 203 (2001)   DOI   ScienceOn
11 M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, J. Appl. Phys., 90, 5308 (2001)   DOI   ScienceOn
12 S. Iijima, Nature, 354, 56 (1991)
13 A.Y. Toporov, R.M. Langford and A.K. Petford-Long, App. Phys. Lett., 77, 3063 (2000)
14 Y. Murakami, Y. Miyauchi, S. Chiashi, and S. Maruyama. Chem. Phys.Lett., 374, 53 (2003)
15 L. Nilsson, Appl. Phys. Lett., 76, 2071 (2000)
16 Y.S. Choi, J.H. Kang, Y.J. Park, W.B. Choi, C.J. Lee, S.H. Jo, C.G. Lee, J.H. You, J.E. Jung, N.S. Lee, and J.M. Kim., Diamond & Related Materials, 10, 1705 (2001)   DOI   ScienceOn
17 P. G. Collins, A. Zettle, H. Bando, A. Thess, and R. E. Smally, Science, 278, 100 (1997)   DOI   ScienceOn
18 N. Nagaraju, A. Fonseca, Z. Konya, and J. B. Nagy, J. of Molecular Catalysis A, 181, 57 (2002)
19 A.C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature, 386, 377 (1997)
20 Ruth Y. Zhang, Islamshah Amlani, Jeff Baker, John Tresek, and Raymond K. Tsui, Nano Lett., 3, 731 (2003)   DOI   ScienceOn