Carbon-Nanotubes Grown from Spin-Coated Nanoparticles for Field-Emission Displays

  • Kim, Do-Yoon (Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University) ;
  • Yoo, Ji-Beom (Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University) ;
  • Han, In-Taek (Materials Lab., Samsung Advanced Institute of Technology) ;
  • Kim, Ha-Jin (Materials Lab., Samsung Advanced Institute of Technology) ;
  • Kim, Ha-Jong (Materials Lab., Samsung Advanced Institute of Technology) ;
  • Jin, Yong-Wan (Materials Lab., Samsung Advanced Institute of Technology) ;
  • Kim, Jong-Min (Materials Lab., Samsung Advanced Institute of Technology)
  • Published : 2005.06.24

Abstract

The density controlled carbon nanotubes (CNTs) are grown on the iron acetate nanoparticles by using the freeze-dry method. The iron-acetate [Fe(II)$(CH_3COO)_2$] solution is used to prepare the catalytic iron nanoparticles. The density of CNTs is controlled in order to enhance the field emission process. Furthermore, the patterning of the iron nanoparticle catalyst-layer for the fabrication of electronic devices is simply achieved by using alkaline solution, TMAH (tetramethylammonium hydroxide). We applied this patterning process of catalyst layer to form the electron emitter with under-gate type triode structure.

Keywords

References

  1. S. Iijima, Nature, 354, 56 (1991)
  2. P. G. Collins, A. Zettle, H. Bando, A. Thess, and R. E. Smally, Science, 278, 100 (1997) https://doi.org/10.1126/science.278.5340.997
  3. A.C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature, 386, 377 (1997)
  4. C. A. Bower, O. Zhou, Z. Wei, D. J. Werder, and J. Sungho, Appl. Phys. Lett., 77, 2767 (2000)
  5. M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, J. Appl. Phys., 90, 5308 (2001) https://doi.org/10.1063/1.1377023
  6. M. Croci, J.-M. Bonard, O. Noury, T. Stockli, and A. Chatelain, Chem. Yap. Deposition, 8, 89 (2002)
  7. S. J. Oh, J. Zhang, Y. Cheng, H. Shimoda, and O. Zhou, Appl. Phys. Lett., 84, 3738 (2004) https://doi.org/10.1063/1.1637949
  8. C. Ducati, I. Alexandrou, M. Chhowalla, J. Robertson, and G. A. J. Amaratunga, J. Appl. Phys., 95, 6387 (2004) https://doi.org/10.1063/1.1728293
  9. Ruth Y. Zhang, I. Amlani, J. Baker, John Tresek, Raymond K. Tsui, and P. Fejes, Nano Lett., 3, 731 (2003) https://doi.org/10.1021/nl020207l
  10. Y. Murakami, Y. Miyauchi, and S. Maruyama, Chem. Phys. Lett., 377, 49 (2003)
  11. S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Chem. Phys. Lett., 360, 229 (2002)
  12. Ruth Y. Zhang, Islamshah Amlani, Jeff Baker, John Tresek, and Raymond K. Tsui, Nano Lett., 3, 731 (2003) https://doi.org/10.1021/nl020207l
  13. Y. Murakami, Y. Miyauchi, S. Chiashi, and S. Maruyama. Chem. Phys.Lett., 374, 53 (2003)
  14. L. Nilsson, Appl. Phys. Lett., 76, 2071 (2000)
  15. N. Nagaraju, A. Fonseca, Z. Konya, and J. B. Nagy, J. of Molecular Catalysis A, 181, 57 (2002)
  16. R.M.H. New, R.F.W. Pease, and R.L. White, J. Vac. Sci. Technol. B, 13, 1089 (1995) https://doi.org/10.1116/1.588218
  17. A.Y. Toporov, R.M. Langford and A.K. Petford-Long, App. Phys. Lett., 77, 3063 (2000)
  18. U.C. Fisher, and H.P. Zingsheim, J. Vac. Sci. Technol., 19, 881 (1981)
  19. C.A. Ross, Annu. Rev. Mater. Res., 31, 203 (2001) https://doi.org/10.1146/annurev.matsci.31.1.1
  20. Y.S. Choi, J.H. Kang, Y.J. Park, W.B. Choi, C.J. Lee, S.H. Jo, C.G. Lee, J.H. You, J.E. Jung, N.S. Lee, and J.M. Kim., Diamond & Related Materials, 10, 1705 (2001) https://doi.org/10.1016/S0925-9635(00)00358-7