• Title/Summary/Keyword: transgenic chickens

Search Result 27, Processing Time 0.025 seconds

Unanticipated Gene Deletion in the Transgenic Chicken Employing Ovalbumin Promoter for Oviduct Specific Expression

  • Jang, Tae Young;Koo, Bon Chul;Kwon, Mo Sun;Roh, Ji Yeol;Kim, Teoan;Park, Young Sik
    • Reproductive and Developmental Biology
    • /
    • v.37 no.3
    • /
    • pp.91-96
    • /
    • 2013
  • Transgenic chickens have been spotlighted as an highly potent bioreactor for their fecundity, short generation time, and eggs associated with mass production of protein. In this study, we generated transgenic chickens exhibiting oviduct specific expression of human growth hormone fused to human transferrin for oral administration. Gene of the modified growth hormone located at downstream ovalbumin promoter (~3.6 kb) was introduced to stage X blastodermal cell employing retrovirus vector system. Several transgenic chickens were successfully generated. However, genomic analyses showed unexpected deletion within the transgene. The modification of the transgene seemed to occur during germ cell formation because the deletion was detected only from the sperm DNA of the G0 founder animal. There was no evidence of deletion in the somatic cell DNA samples of the same chicken. Consequently, same pattern of the deletion was confirmed in both somatic and germ cells of the G1 progeny.

Generation of Transgenic Chickens Regulating hEPO Gene Expression (hEPO 유전자의 발현이 조절되는 형질전환 닭의 생산)

  • Koo, Bon-Chul;Kwon, Mo-Sun;Kim, Te-Oan
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.193-199
    • /
    • 2010
  • We report here the production of transgenic chickens that can regulate human erythropoietin (hEPO) gene expression. The glycoprotein hormone hEPO is an essential for viability and growth of the erythrocytic progenitors. Retrovirus vector system used in this study has two features including tetracycline-controllable promoter and woodchuck hepatitis virus posttranscriptional regulator element (WPRE). The former is for to reduce the possibility of physiological disturbance due to constitutional and unregulated expression of hEPO gene in the transgenic chicken. The latter is for maximum expression of the foreign gene when we turn-on the gene expression. A replication-defective Moloney murine leukemia virus (MoMLV)-based vectors packaged with vesicular stomatitis virus G glycoprotein (VSV-G) was injected beneath the blastoderm of non-incubated chicken embryos (stage X). Out of 325 injected eggs, 28 chicks hatched after 21 days of incubation and 16 hatched chicks were found to express the hEPO gene delivered by the vector. The biological activity of the recombinant hEPO in transgenic chicken serum was comparable to its commercially available counterpart. The recombinant hEPO in transgenic chicken serum had N- and O-linked carbohydrate simillar to that produced from in vitro cultured cells transformed with hEPO gene.

Possible Production of Transgenic Chicken by Transferring Foreign Genes and Germ Cells (외부유전자의 전이에 의한 배아세포와 트란스젠닉 가금 생산의 가능성)

  • Fujihara, N.
    • Korean Journal of Poultry Science
    • /
    • v.26 no.2
    • /
    • pp.119-129
    • /
    • 1999
  • In recent years, numerous researches have been carried out in author's laboratory to develop several kinds of methods for producing transgened chicken, leaving a lot of new findings. Some of them are very useful to search for new approaches necessary to improve the efficiency of hatchability and the survival rate of developing trasgened embryos. The results obtained hitherto might be summarized as follows: (1) foreign gene(Lac Z/ Miw Z) introduced into blastodermal cells of developing embryos was successfully transferred to embryos, leading to the production of primordial germ cells(PGCs) carrying foreign DNA. However, hatched hickens failed to show the incorporation of introduced gene into the gonads. (2) When foreign gene was introduced into germinal crescent region (GCR), the gene was also efficiently incorporated into germ cells, resulting in the production of transgened chickens(offspring) which produced fruther offspring having foreign gene in the gonads. In this case, 2nd and 3rd generations of chickens were obtained through the reproduction of transgened birds. (3) In another way, the gene was injected into blood vessels of developing embryos at stage 13∼15, creating PGCs having foreign gene, and produced some transgened chickens. In this work, the PGCs were transfered between embryos, resulting in the production of transgenic chickens. (4) in these experiments, PGCs were effectively employed for producing transgenic birds, developing some kinds of chimeric chickens from homo- or hetero-sexual transfer of the PGCs from embryos. This means that the gonads from donor PGCs developed in some degree to the stage of hatching. However, these gonads showed slightly abnormal tissues similar to ovotestis like organs through histological examination. (5) Avian Leukosis Virus(ALV) induced B cell line(DT40) successfully carried foreign genes into chicken embryos, suggesting the possibility of the cells as a vector in this field of study in the future. (6) Inter-embryonic transfer of the PGCs also gave us some.

  • PDF

Analysis of the Foreign Gene Transmission in the GFP Transgenic Chickens (형질전환 닭에서 GFP 유전자 전이 연구)

  • Jang, Ye-Jin;Ji, Mi-Ran;Jeon, Mi-Hyang;Kim, Jeom-Sun;Kim, Kyung-Woon;Han, Deug-Woo;Chung, Hak-Jae;Yang, Byoung-Chul;Yoo, Jae-Gyu;Park, Jin-Ki;Kim, Te-Oan;Byun, Sung-June
    • Korean Journal of Poultry Science
    • /
    • v.39 no.3
    • /
    • pp.241-244
    • /
    • 2012
  • This study was performed to analyze the generational transmission and the expression of the foreign gene in the GFP transgenic chickens. The transmission rate and the expression of the GFP gene was investigated from the GFP transgenic rooster (G2) as the first founder to the ninth (G8). Analysis of GFP expression in hatched chickens was used the UV lamp. When GFP was expressed in the wings, bill and legs of a chick, the bird only was selected as a transgenic chick. The average transmission rate of the overall transgenic was 38~58%. These results showed that the transmission of the GFP gene in the transgenic chickens in accordance with the laws of Mendel's continues to the next generation without gene silencing.

Production of Transgenic Chimeric Chickens Using Blastodermal Cells

  • Yan, Haifeng;Lee, Chaeyoung;Xiao, Bingnan;Trefil, Pavel;Liu, Shixun;Kim, Younyoung;Wu, Xiaolin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.158-164
    • /
    • 2005
  • A practical approach was proposed to produce transgenic chimeric chickens using blastodermal cells (BCs). The chicken BCs were mechanically dissociated and transferred into the recipient eggs that had been exposed to 500 rads irradiation of$^{60}Co$ and windowed on the equatorial plane. Chimeric chickens were generated using two models: the crosses (MXL) from Black Minors (ii,EE,b/b) ♂${\times}$Barred Leghorns (ii,ee,B/-) ♀ as donors and White Leghorns (WL, II) as acceptors (Model 1), or the Black Heifengs (BH, ii,EE,bb) as donors and Hua-xing white (HW, II) as recipients (Model 2). The treated eggs were incubated in their original shells in normal conditions until hatching. Green fluorescent protein (GFP) gene was transferred into the BCs derived from MXL and BH via lipofectamine and the pEGFP-C1, and transfection efficiency into the BCs was examined under a fluorescent microscope. Potential transgenic chimeras were selected based on the proposed methods in this study. Using the fresh BCs, the best rate of phenotypic chimeras was 6.7% and 26.0% in model-1 groups, and model-2 groups, respectively. We also described the optimized conditions for transfection. Although 30% of the BCs transfected in vitro emitted green light under an inverted fluorescent microscope, no embryos injected with the transfected BCs expressed foreign GFP gene at 3-4 days.

Human extracellular superoxide dismutase (EC-SOD) expression in transgenic chicken

  • Byun, Sung June;Ji, Mi-Ran;Jang, Ye-Jin;Hwang, A-In;Chung, Hee Kyoung;Kim, Jeom Sun;Kim, Kyung-Woon;Chung, Hak-Jae;Yang, Byoung-Chul;Jeon, Iksoo;Park, Jin-Ki;Yoo, Jae Gyu;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.46 no.8
    • /
    • pp.404-409
    • /
    • 2013
  • Extracellular superoxide dismutase (EC-SOD) is a metallo-protein and functions as an antioxidant enzyme. In this study, we used lentiviral vectors to generate transgenic chickens that express the human EC-SOD gene. The recombinant lentiviruses were injected into the subgerminal cavity of freshly laid eggs. Subsequently, the embryos were incubated to hatch using phases II and III of the surrogate shell ex vivo culture system. Of 158 injected embryos, 16 chicks (G0) hatched and were screened for the hEC-SOD by PCR. Only 1 chick was identified as a transgenic bird containing the transgene in its germline. This founder (G0) bird was mated with wild-type hens to produce transgenic progeny, and 2 transgenic chicks (G1) were produced. In the generated transgenic hens (G2), the hEC-SOD protein was expressed in the egg white and showed antioxidant activity. These results highlight the potential of the chicken for production of biologically active proteins in egg white.

Current Strategies of Genomic Modification in Livestock and Applications in Poultry

  • Park, Tae Sub
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.65-69
    • /
    • 2019
  • Since the development of the first genetically-modified mouse, transgenic animals have been utilized for a wide range of industrial applications as well as basic research. To date, these transgenic animals have been used in functional genomics studies, disease models, and therapeutic protein production. Recent advances in genome modification techniques such zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRIPSR)-Cas9, have led to rapid advancement in the generation of genome-tailored livestock, as well as experimental animals; however, the development of genome-edited poultry has shown considerably slower progress compared to that seen in mammals. Here, we will focus primarily on the technical strategies for production of transgenic and gene-edited chickens, and their potential for future applications.

Avian Somitic Cell Chimeras Using Surrogate Eggshell Technology

  • Mozdziak, Paul E.;Hodgson, Dee;Petitte, James N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.801-806
    • /
    • 2008
  • A classical technique to study somitic cell fate is to employ the cross-transplantation of quail somites into a chick host. The densely stained nucleoli of the quail cells makes it possible to assess the fate of the donor quail cells in the chick host. Classical somite transplantation techniques have been hampered by the necessity of a small opening in the chick eggshell, difficulty in hatching the offspring and interspecies post-hatch graft rejection. With the advent of transgenic chicken technology, it is now possible to use embryos from transgenic chickens expressing reporter genes in somite cross-transplantation techniques to remove any possibility of interspecies graft rejection. This report describes using a surrogate eggshell system in conjunction with transgenic chick:chick somitic cell cross-transplantation to generate viable chimeric embryos and offspring. Greater than 40% of manipulated embryos survive past 10 days of incubation, and ~80% of embryos successfully cultured past 10 days of incubation hatched to produce viable offspring.

Transfer and Expression of the Recombinant hFSH Gene in CHO Cells and Transgenic Chickens using Retrovirus Vector System (CHO 세포와 형질전환 닭에 있어서 Retrovirus Vector System에 의한 hFSH 재조합 유전자의 전이와 발현)

  • 권모선;구본철;심호섭;박창식;이성호;김태완
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.3
    • /
    • pp.197-206
    • /
    • 2003
  • hFSH (human follicle stimulating hormone) is heterodimer consisting of $\alpha$ and $\beta$ subunits. Since assembly of the both subunits in the cell is often the rate-limiting step in production of functional hormone, single-chain hormones have been engineered by genetically linking two different cDNA fragments with a linker sequence. Using retrovirus vector system, the resulting recombinant hFSH gene was transferred in CHO cells and chicken embryos, and the expression of the gene was investigated. In CHO cells, protein synthesis from the single-chain FSH gene was 17 fold higher than that from the heterodimeric counterpart. In the study of transgenic chickens, ten of the eleven chicks hatched from 62 embryos manupulated with recombinant retrovirus stock was determined to carry transgenic genes. RT-PCR analyses confirmed transcription of the single-chain FSH gene, however, no recombinant FSH was detected from the blood samples.

Production of hTPO Transgenic Chickens using Tetracycline-Inducible Expression System (Tetracycline-Inducible Expression System을 이용한 Human Thrombopoietin (hTPO) 형질전환 닭의 생산)

  • Kwon, M.S.;Koo, B.C.;Kim, D.H.;Kim, M.J.;Kim, T.
    • Korean Journal of Poultry Science
    • /
    • v.36 no.2
    • /
    • pp.177-186
    • /
    • 2009
  • It is well-known that unregulated over-expression of foreign gene may have unwanted physiological or toxic effects in transgenic animals. To circumvent these problems, we constructed retrovirus vector designed to express the foreign gene under the control of the tetracycline-inducible promoter. However, gene expressions in the tetracycline-inducible expression system (Tet system) are not completely regulated but a little leaky due to the inherent defects in conventional Tet-based systems. A more tightly controllable regulatory system can be achieved when the advanced versions ($rtTA2^SM2$) of rtTA and a minimal promoter in responsive components (pTRE-tight) are used in combination therein. In this study, we tried to produce human thrombopoietin (hTPO) from various target cells and transgenic chickens using the retrovirus vector combined with Tet system. hTPO is the primary regulator of platelet production and has an important role in the survival and expansion of hematopoietic stem cells. In a preliminary experiment in vitro, higher hTPO expression and tighter expression control were observed in chicken embryonic fibroblast (CEF) cells. We also measured the biological activity of the hTPO using Mo7e cells whose proliferation is dependant on hTPO. The biological activity of the recombinant hTPO from CEF was higher than both its commercial counterpart and hTPO from other target cells. The recombinant retrovirus was injected beneath the blastoderm of non-incubated chicken embryos (stage X). Out of 138 injected eggs, 15 chicks hatched after 21 days of incubation. Among them, 8 hatched chicks were hTPO positive. When the Go transgenic chicken was fed doxycycline (0.5 mg per 1 gram of feed), a tetracycline derivative, hTPO concentration of the transgenic chicken blood was 200 ng/mL. Germline transmission of the transgene was confirmed in sperm of the Go transgenic roosters. These results are informative to establish transgenic chickens as bioreactors for the mass production of commercially valuable and biological active human cytokine proteins.