DOI QR코드

DOI QR Code

Production of hTPO Transgenic Chickens using Tetracycline-Inducible Expression System

Tetracycline-Inducible Expression System을 이용한 Human Thrombopoietin (hTPO) 형질전환 닭의 생산

  • Kwon, M.S. (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Koo, B.C. (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Kim, D.H. (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Kim, M.J. (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Kim, T. (Department of Physiology, Catholic University of Daegu School of Medicine)
  • 권모선 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 구본철 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 김도향 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 김민지 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 김태완 (대구가톨릭대학교 의과대학 생리학교실)
  • Published : 2009.06.30

Abstract

It is well-known that unregulated over-expression of foreign gene may have unwanted physiological or toxic effects in transgenic animals. To circumvent these problems, we constructed retrovirus vector designed to express the foreign gene under the control of the tetracycline-inducible promoter. However, gene expressions in the tetracycline-inducible expression system (Tet system) are not completely regulated but a little leaky due to the inherent defects in conventional Tet-based systems. A more tightly controllable regulatory system can be achieved when the advanced versions ($rtTA2^SM2$) of rtTA and a minimal promoter in responsive components (pTRE-tight) are used in combination therein. In this study, we tried to produce human thrombopoietin (hTPO) from various target cells and transgenic chickens using the retrovirus vector combined with Tet system. hTPO is the primary regulator of platelet production and has an important role in the survival and expansion of hematopoietic stem cells. In a preliminary experiment in vitro, higher hTPO expression and tighter expression control were observed in chicken embryonic fibroblast (CEF) cells. We also measured the biological activity of the hTPO using Mo7e cells whose proliferation is dependant on hTPO. The biological activity of the recombinant hTPO from CEF was higher than both its commercial counterpart and hTPO from other target cells. The recombinant retrovirus was injected beneath the blastoderm of non-incubated chicken embryos (stage X). Out of 138 injected eggs, 15 chicks hatched after 21 days of incubation. Among them, 8 hatched chicks were hTPO positive. When the Go transgenic chicken was fed doxycycline (0.5 mg per 1 gram of feed), a tetracycline derivative, hTPO concentration of the transgenic chicken blood was 200 ng/mL. Germline transmission of the transgene was confirmed in sperm of the Go transgenic roosters. These results are informative to establish transgenic chickens as bioreactors for the mass production of commercially valuable and biological active human cytokine proteins.

형질전환 동물에 있어서 외래 유전자의 조절되지 않은 과다 발현은 생리적인 부작용이나 독성을 나타내게 된다. 본 연구에서는 이러한 문제를 해결하기 위하여 외래 유전자 발현 조절 system인 tetracycline-inducible expression system(Tet system)을 도입하였다. 그러나 종래의 Tet system을 이용한 유전자 발현 조절은 system 자체의 구성 요소로 인한 미미한 leaky 현상 때문에 완벽하게 이루어지지 않는다. 본 연구에서는 보다 완벽한 외래 유전자의 발현 조절 system을 구축하기 위하여 rtTA 대신 진일보한 형태의 $rtTA2^SM2$를 도입하고 TRE 부분을 TRE-tight로 대체하였다. 확립된 retrovirus vector system을 이용하여 다양한 표적세포와 형질전환 닭으로부터 혈소판 생산의 일차적인 조절자이며, 조혈간세포의 생존과 증식에 있어서 매우 중요한 역할을 하는 human thrombopoietin(hTPO)를 생산하고자 하였다. In vitro 상의 연구에서, CEF 세포에서 발현되는 hTPO가 가장 높은 발현량과 발현 유도율을 나타내었으며, 상업적으로 판매되고 있는 hTPO나 다른 표적세포에서 생산된 hTPO에 비해 생물학적 활성이 가장 높은 것으로 확인되었다. 고농도로 농축한 재조합 retrovirus를 stage X단계의 계란의 배반엽 층에 미세주입하여 대리 난각 방법으로 배양한 결과, 미세주입한 138개의 계란 중 21일 후에 15개의 계란에서 병아리가 부화하였으며, 그 중 8마리가 형질전환 개체로 확인되었다. 이 형질전환 닭은 사료 1 g 당 0.5 mg의 doxycycline을 첨가하여 2주간 식이하였으며, 그 후 혈액을 채취하여 hTPO 농도를 측정한 결과 200ng/mL로 확인되었다. 또한 형질전환 개체 중 수컷의 정자에서 hTPO 유전자의 존재를 확인함으로써 germLine transmission의 가능성을 입증하였다. 이상의 연구 결과는 사람의 cytokine 단백질의 대량생산을 위한 생체반응기로서의 형질전환 닭의 생산 가능성을 제시한 데 의의가 있다.

Keywords

References

  1. Avanzi GC, Lista P, Giovinazzo B, Moniero R, Saglio G, Benetton G, Codd R, Cattoretti G, Pegoraro L 1988 Selective growth response to IL-3 of a human leukaemic cell line with megakaryoblastic features. Br J Haematol 69:359 https://doi.org/10.1111/j.1365-2141.1988.tb02374.x
  2. Bohl D, Naffakh N, Heard JM 1997 Long-term control of erythropoietin secretion by doxycycline in mice with engineered primary myoblast. Nature Med 3:299-305 https://doi.org/10.1038/nm0397-299
  3. Dyck MK, Lacroix D, Pothier F, Sirard MA 2003 Making recombinant proteins in animals: different systems different applications. Trends Biotechnol 21:394-399 https://doi.org/10.1016/S0167-7799(03)00190-2
  4. Eyal-Giladi H, Kochav S 1976 From cleavage to primitive streak formation: A complementary normal table and a new look at the first stages of the development of the chick. Dev Biol 49:321-337 https://doi.org/10.1016/0012-1606(76)90178-0
  5. Fontes CM, Ali S, Gilbert HJ, Hazlewood GP, Hirst BH, Hall J 1999 Bacterial xylanase expression in mammalian cells and transgenic mice. J Biotechnol 72:95-101 https://doi.org/10.1016/S0168-1656(99)00098-X
  6. Gossen M, Bujard H 1992 Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551 https://doi.org/10.1073/pnas.89.12.5547
  7. Gossen M, Freundlieb S, Bender G, Müller G, Hillen W, Bujard H 1995 Transcriptional activation by tetracyclines in mam malian cells. Science 268:1766-1769 https://doi.org/10.1126/science.7792603
  8. Houdebine LM 2002 Antibody manufacture in transgenic animals and comparisons with other systems. Curr Opin Biotechnol 13:625-629 https://doi.org/10.1016/S0958-1669(02)00362-2
  9. Houdebine LM 2006 Transgenic animal models and target validation. Methods Mol Biol 360:163-202 https://doi.org/10.1385/1-59745-165-7:163
  10. Houdebine LM 2009 Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 32:107-121 https://doi.org/10.1016/j.cimid.2007.11.005
  11. Houdebine, LM 2000 Transgenic animal bioreactors. Transgenic Res 9:305-320 https://doi.org/10.1023/A:1008934912555
  12. Hunter CV, Tiley LS, Sang HM 2005 Developments in transgenic technology: applications for medicine. Trends Mol Med 11:293-298 https://doi.org/10.1016/j.molmed.2005.04.001
  13. Ivarie R 2003 Avian transgenesis: progress towards the promise. Trends Biotechnol 21:14-19 https://doi.org/10.1016/S0167-7799(02)00009-4
  14. Kamihira M, Ono KI, Esaka K, Nishijima KI, Kigaku R, Komatsu H, Yamashita T, Kyogoku K, Iijima S 2005 High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector. J Virol 79:10864-10874 https://doi.org/10.1128/JVI.79.17.10864-10874.2005
  15. Kaushansky K 1998 Thrombopietin. N Engl J Med 339:746-754 https://doi.org/10.1056/NEJM199809103391107
  16. Keefer CL 2004 Production of bioproducts through the use of transgenic animal models. Anim Reprod Sci 82-83:5-12 https://doi.org/10.1016/j.anireprosci.2004.04.010
  17. Kodama D, Nishimiya D, Iwata K, Yamaguchi K, Yoshida K, Kawabe Y, Motono M, Watanabe H, Yamashita T, Nishijima K, Kamihira M, Iijima S 2008 Production of human erythropoietin by chimeric chickens. Biochem Biophys Res Commun 367:834-839 https://doi.org/10.1016/j.bbrc.2008.01.020
  18. Koo BC, Kwon MS, Choi BR, Kim JH, Cho SK, Sohn SH, Cho EJ, Lee HT, Chang W, Jeon I, Park JK, Park JB, Kim T 2006 Production of germline transgenic chickens expressing enhanced green fluorescent protein using a MoMLV-based retrovirus vector. FASEB J 20:2251-2260 https://doi.org/10.1096/fj.06-5866com
  19. Kwon MS, Koo BC, Choi BR, Kim JH, Park Y-Y, Lee YM, Suh HS, Park YS, Lee HT, Kim J-H, Roh JY, Kim N-H, Kim T 2008 Generation of transgenic chickens that produce bioactive human granulocyte-colony stimulating factor. Mol Reprod Dev 75:1120-1126 https://doi.org/10.1002/mrd.20860
  20. Kwon MS, Koo BC, Kim DH, Kim T 2007 Construction of retrovirus vector system for the regulation of recombinant hTPO Gene expression. Reprod Dev Biol 31:161-167
  21. Lillico SG, McGrew MJ, Sherman A, Sang HM 2005 Transgenic chickens as bioreactors for protein-based drugs. Drug Discov Today 10:191-196 https://doi.org/10.1016/S1359-6446(04)03317-3
  22. Mayford M, Bach ME, Huang Y-Y, Wang L, Hawkins RD, Kandel ER 1996 Control of mamary formation through regulated-expression of a CaMK transgene. Science 274:1678-1683 https://doi.org/10.1126/science.274.5293.1678
  23. McGrew MJ, Sherman A, Ellard FM, Lillico SG, Gilhooley HJ, Kingsman AJ, Mitrophanous KA, Sang H 2004 Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep 5:728-733 https://doi.org/10.1038/sj.embor.7400171
  24. Park TS, Jeong DK, Kim JN, Song GH, Hong YH, Lim JM, Han JY 2003 Improved germline transmission in chicken chimeras produced by transplantation of gonadal primordial germ cells into recipient embryos. Biol Reprod 68:1657-1662 https://doi.org/10.1095/biolreprod.102.006825
  25. Petitte JN, Mozdziak PE 2002 Transgenic chickens as bioreactors for protein-based drugs. In Pinkert CA, editor. Transgenic Animal Technology, 2nd edn. San Diego: Academic Press. p279-306
  26. Raju TS, Briggs JB, Borge SM, Jones AJ 2000 Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10:477-486 https://doi.org/10.1093/glycob/10.5.477
  27. Sitnicka E, Lin N, Priestley GV, Fox N, Broudy VC, Wolf NS, Kaushansky K 1996 The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood 87:4998-5005
  28. Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W 2000 Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 97:7963-7968 https://doi.org/10.1073/pnas.130192197
  29. van de Lavoir MC, Diamond JH, Leighton PA, Mather-Love CM, Heyer BS, Bradshaw R, Kerchner A, Hooi LT, Gessaro TM, Swanberg SE, Delany ME, Etches RJ 2006 Germline transmission of genetically modified primordial germ cells. Nature 441:766-769 https://doi.org/10.1038/nature04831
  30. Zhu L, van de Lavoir MC, Albanese J, Beenhouwer DO, Cardarelli PM, Cuison S, Deng DF, Deshpande S, Diamond JH, Green L, Halk EL, Heyer BS, Kay RM, Kerchner A, Leighton PA, Mather-Love CM, Morrison SL, Nikolov ZL, Passmore DB, Pradas-Monne A, Preston BT, Rangan VS, Shi M, Srinivasan M, White SG, Winters-Digiacinto P, Wong S, Zhou W, Etches RJ 2005 Production of human monoclonal antibody in eggs of chimeric chickens. Nat Biotechnol 23:1159-1169 https://doi.org/10.1038/nbt1132
  31. Zufferey R, Donello JE, Trono D, Hope TJ 1999 Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886-2892