Browse > Article
http://dx.doi.org/10.12750/JARB.34.2.65

Current Strategies of Genomic Modification in Livestock and Applications in Poultry  

Park, Tae Sub (Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University)
Publication Information
Journal of Animal Reproduction and Biotechnology / v.34, no.2, 2019 , pp. 65-69 More about this Journal
Abstract
Since the development of the first genetically-modified mouse, transgenic animals have been utilized for a wide range of industrial applications as well as basic research. To date, these transgenic animals have been used in functional genomics studies, disease models, and therapeutic protein production. Recent advances in genome modification techniques such zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRIPSR)-Cas9, have led to rapid advancement in the generation of genome-tailored livestock, as well as experimental animals; however, the development of genome-edited poultry has shown considerably slower progress compared to that seen in mammals. Here, we will focus primarily on the technical strategies for production of transgenic and gene-edited chickens, and their potential for future applications.
Keywords
chicken; CRISPR/Cas9; genome-editing; transgenic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS and Fahrenkrug SC. 2016. Production of hornless dairy cattle from genome-edited cell lines. Nat. Biotechnol. 34:479-81.   DOI
2 Cong LF, Ran A, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA and Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science. 339:819-23.   DOI
3 Dimitrov L, Pedersen D, Ching KH, Yi H, Collarini EJ, Izquierdo S, van de Lavoir MC and Leighton PA. 2016. Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells. PLoS One. 11:e0154303.   DOI
4 Harvey AJ, Speksnijder G, Baugh LR, Morris JA and Ivarie R. 2002. Expression of exogenous protein in the egg white of transgenic chickens. Nat. Biotechnol. 20:396-99.   DOI
5 Heckmann BL, Zhang X, Xie X, Saarinen A, Lu X, Yang X and Liu J. 2014. Defective adipose lipolysis and altered global energy metabolism in mice with adipose overexpression of the lipolytic inhibitor G0/G1 switch gene 2 (G0S2). J. Biol. Chem. 289:1905-16.   DOI
6 Lillico SG, Proudfoot C, King TJ, Tan W, Zhang L, Mardjuki R, Paschon DE, Rebar EJ, Urnov FD, Mileham AJ, McLaren DG and Whitelaw CB. 2016. Mammalian interspecies substitution of immune modulatory alleles by genome editing. Sci. Rep. 6:21645.   DOI
7 Heidi Ledford. 2015. Transgenic salmon leaps to the dinner table. Nature. 527:417-8.   DOI
8 Kamihira M, Ono K, Esaka K, Nishijima K, Kigaku R, Komatsu H, Yamashita T, Kyogoku K and Iijima S. 2005. High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector. J. Virol. 79:10864-74.   DOI
9 Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ, First NL, Maeda N and Smithies O. 1989. Germline transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc. Natl. Acad. Sci. USA. 86:8927-31.   DOI
10 Lillico SG, Sherman A, McGrew MJ, Robertson CD, Smith J, Haslam C, Barnard P, Radcliffe PA, Mitrophanous KA, Elliot EA and Sang HM. 2007. Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proc. Natl. Acad. Sci. USA. 104:1771-6.   DOI
11 Palmiter RD, Norstedt G, Gelinas RE, Hammer RE and Brinster RL. 1983. Metallothionein-human GH fusion genes stimulate growth of mice. Science. 222:809-14.   DOI
12 Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE and Church, GM. 2013. RNA-guided human genome engineering via Cas9. Science. 339:823-6.   DOI
13 McGrew MJ, Sherman A, Ellard FM, Lillico SG, Gilhooley HJ, Kingsman AJ, Mitrophanous KA and Sang H. 2004. Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep. 5:728-33.   DOI
14 Oishi I, Yoshii K, Miyahara D, Kagami H and Tagami T. 2016. Targeted mutagenesis in chicken using CRISPR/Cas9 system. Sci. Rep. 6:23980.   DOI
15 Oishi I, Yoshii K, Miyahara D and Tagami T. 2018. Efficient production of human interferon beta in the white of eggs from ovalbumin gene-targeted hens. Sci. Rep. 8:10203.   DOI
16 Palgrave CJ, Gilmour L, Lowden CS, Lillico SG, Mellencamp MA and Whitelaw CB. 2011. Species-specific variation in RELA underlies differences in NF-${\kappa}B$ activity: a potential role in African swine fever pathogenesis. J. Virol. 85:6008-14.   DOI
17 Park TS and Han JY. 2012. piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc. Natl. Acad. Sci. USA. 109:9337-41.   DOI
18 Park TS, Lee HJ, Kim KH, Kim JS and Han JY. 2014. Targeted gene knockout in chickens mediated by TALENs. Proc. Natl. Acad. Sci. USA 111:12716-21.   DOI
19 Park TS, Park J, Lee JH, Park JW and Park BC. 2019. Disruption of G0/G1 switch gene 2 (G0S2) reduced abdominal fat deposition and altered fatty acid composition in chicken. FASEB J. 33:1188-98.   DOI
20 Schusser B, Collarini EJ, Yi H, Izquierdo SM, Fesler J, Pedersen D, Klasing KC, Kaspers B, Harriman WD, van de Lavoir MC, Etches RJ and Leighton PA. 2013. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc. Natl. Acad. Sci. USA. 110:20170-5.   DOI
21 Scott BB and Lois C. 2006. Generation of transgenic birds with replication-deficient lentiviruses. Nat. Protoc. 1:1406-11.   DOI
22 Siderovski DP, Blum S, Forsdyke RE and Forsdyke DR. 1990. A set of human putative lymphocyte G0/G1 switch genes includes genes homologous to rodent cytokine and zinc finger protein-encoding genes. DNA Cell Biol. 9:579-587.   DOI
23 Zhang X, Heckmann BL, Campbell LE and Liu J. 2017. G0S2: A small giant controller of lipolysis and adipose-liver fatty acid flux. Biochim. Biophys. Acta. 1862:1146-54.   DOI
24 Thompson S, Clarke AR, Pow AM, Hooper ML and Melton DW. 1989. Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell. 56:313-21.   DOI
25 Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD and Prather RS. 2016. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat. Biotechnol. 34:20-2.   DOI
26 Yang X, Lu X, Lombes M, Rha GB, Chi YI, Guerin TM, Smart EJ and Liu J. 2010. The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab. 11:194-205.   DOI