• Title/Summary/Keyword: transformed section method

Search Result 43, Processing Time 0.075 seconds

From Complexity to Hybridity: Transformative Combinations of Different Programs in Stadium Architecture

  • Shin, Yoon Jeong;Baek, Jin
    • Architectural research
    • /
    • v.21 no.3
    • /
    • pp.59-67
    • /
    • 2019
  • Although many stadiums around the world have incorporated various profitable facilities, many are making conventional and cursory decisions without deep consideration of the interrelationships of different programs. This paper investigates cases in which new programs such as a hotel, a youth hostel, and a dormitory have been introduced into stadiums, showing different results. In the first part of this paper, the theoretical precedents of program combination are studied. Although Bernard Tschumi's notion of the combination of different programs presented its prophetic probability, this paper discern different approaches addressing program mixture, engendering eventually a productive modification of his notion based on the empirical observation of the cases. This paper classifies the manner of programmatic combination into complexity and hybridity, arguing that the latter transforms the spaces and gives rise to unexpected synergy, while the former merely assembles different programs. The second part compares the spaces of complexity and hybridity in stadiums. Through the plan and the section analysis of the spatial structure and the interrelationship of programs, this section reveals how the two different ways of the program combinations have had different results. In hybrid stadiums, programs are not simply gathered, but directly connected and intertwined. In the third part, the nature of the spatial transformation in the hybrid space is researched in detail. In the hybrid stadiums, the collision of the different programs changes the conception of the programs themselves and their related spaces. Hotels and stadiums are not what they once were, provoking unanticipated situations. These transformed spaces not only suggest a method of reutilizing of disused urban spaces, but also of meaningful and communicative program mixture, diversifying and vitalizing a city, not isolated islands of discrepancy. The ultimate purpose of this paper is clarifying the programmatic hybrid paradigm, surpassing complexity through the analysis of the stadium cases and illuminating the manner by which the hybridity breaks the typical tie between the program and space, to cause transformed situations.

A Study On Extracting Surface-Specific Point Using The Cross Section of The Terrain (지형 단면을 이용한 의미점 추출에 관한 연구)

  • Ryoo, Seung-Taek;Yoon, Kyoung-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.2 s.12
    • /
    • pp.133-141
    • /
    • 1998
  • Terrain modelling is composed of a method using the rectangular grid and another using the triangulated irregular network. The method using the triangulated irregular network is most widely used because it can express the characteristics of the terrain well with only a small amount of information on the terrain and also reduces the rendering time. The process of extracting the surface-specific point and a triangular process is needed to construct such triangulated irregular network. This paper concentrates on the process of extracting the surface-specific point. The 8-direction neighborhood method and other transformed methods of the former method are frequently used to extract the surface-specific point. Another method which eliminates the unnecessary points using the Polygon reduction method is also suggested However, the 8-direction neighborhood method has a big fault of also drawing out some unnecessary points. To resolve such problem, we suggest a method of extracting the surface-specific point using the cross section of the terrain. This method reduces the time to extract the surface-specific point and enables a more precise extraction with less terrain information.

  • PDF

Compressive behavior of built-up open-section columns consisting of four cold-formed steel channels

  • Shaofeng, Nie;Cunqing, Zhao;Zhe, Liu;Yong, Han;Tianhua, Zhou;Hanheng, Wu
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.907-929
    • /
    • 2022
  • Compression experiments were conducted to investigate the compressive behavior of built-up open-section columns consisting of four cold-formed steel channels (BOCCFSs) of different lengths, thicknesses, and cross-section sizes (OB90 and OB140). The load-displacement curves, failure modes, and maximum compression strength values were analyzed in detail. The tests showed that the failure modes of the OB90 specimens transformed from a large deformation concentration induced by local buckling to flexural buckling with the increase in the slenderness ratio. The failure modes of all OB140 specimens were deformation concentration, except for one long specimen, whose failure mode was flexural buckling. When the slenderness ratios of the specimens were less than 55, the failure modes were controlled by local buckling. Finite element models were built using ABAQUS software and validated to further analyze the mechanical behavior of the BOCCFSs. A parametric study was conducted and used to explore a wide design space. The numerical analysis results showed that when the screw spacing was between 150 mm and 450 mm, the difference in the maximum compression strength values of the specimens was less than 4%. The applicability and effectiveness of the design methods in Chinese GB50018-2002 and AISI-S100-2016 for calculating the compression strength values of the BOCCFSs were evaluated. The prediction methods based on the assumptions produced predictions of the strength that were between 33% to 10% conservative as compared to the tests and the finite element analysis.

Application of differential transformation method for free vibration analysis of wind turbine

  • Bozdogan, Kanat Burak;Maleki, Farshid Khosravi
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.11-17
    • /
    • 2021
  • In recent years, there has been a tendency towards renewable energy sources considering the damages caused by non-renewable energy resources to nature and humans. One of the renewable energy sources is wind and energy is obtained with the help of wind turbines. To determine the behavior of wind turbines under earthquake loads, dynamic characteristics are required. In this study, the differential transformation method is proposed to determine the free vibration analysis of wind turbines with a variable cross-section. The wind turbine is modeled as an equivalent variable continuous flexural beam and blade weight is considered as a point mass at the top of the structures. The differential equation representing the free vibration of the wind turbine is transformed into an algebraic equation with the help of differential transformation method and the angular frequencies and the mode shapes of the wind turbine are obtained by the help of the differential transformation method. In the study, a sample taken from the literature was solved with the presented method and the suitability of the method was investigated. The same wind turbine example also modeled by finite element modelling software, ABAQUS. Results of the finite element model and differential transformation method are compared with each other and the results are in good agreement.

Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM

  • Madenci, Emrah
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.493-509
    • /
    • 2021
  • There is not enough mixed finite element method (MFEM) model developed for static and dynamic analysis of functionally graded material (FGM) beams in the literature. The main purpose of this study is to develop a reliable and efficient computational modeling using an efficient functional in MFEM for free vibration and static analysis of FGM composite beams subject to high order shear deformation effects. The modeling of material properties was performed using mixture rule and Mori-Tanaka scheme which are more realistic determination techniques. This method based on the assumption that a two phase composite material consisting of matrix reinforced by spherical particles, randomly distributed in the beam. To explain the displacement components of the shear deformation effects, it was accepted that the shear deformation effects change sinusoidal. Partial differential field equations were obtained with the help of variational methods and then these equations were transformed into a novel functional for FGM beams with the help of Gateaux differential derivative operator. Thanks to the Gateaux differential method, the compatibility of the field equations was checked, and the field equations and boundary conditions were reflected to the function. A MFEM model was developed with a total of 10 degrees of freedom to apply the obtained functional. In the numerical applications section, free vibration and flexure problems solutions of FGM composite beams were compared with those predicted by other theories to show the effects of shear deformation, thickness changing and boundary conditions.

Energy-Efficient Resource Allocation for Application Including Dependent Tasks in Mobile Edge Computing

  • Li, Yang;Xu, Gaochao;Ge, Jiaqi;Liu, Peng;Fu, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2422-2443
    • /
    • 2020
  • This paper studies a single-user Mobile Edge Computing (MEC) system where mobile device (MD) includes an application consisting of multiple computation components or tasks with dependencies. MD can offload part of each computation-intensive latency-sensitive task to the AP integrated with MEC server. In order to accomplish the application faultlessly, we calculate out the optimal task offloading strategy in a time-division manner for a predetermined execution order under the constraints of limited computation and communication resources. The problem is formulated as an optimization problem that can minimize the energy consumption of mobile device while satisfying the constraints of computation tasks and mobile device resources. The optimization problem is equivalently transformed into solving a nonlinear equation with a linear inequality constraint by leveraging the Lagrange Multiplier method. And the proposed dual Bi-Section Search algorithm Bi-JOTD can efficiently solve the nonlinear equation. In the outer Bi-Section Search, the proposed algorithm searches for the optimal Lagrangian multiplier variable between the lower and upper boundaries. The inner Bi-Section Search achieves the Lagrangian multiplier vector corresponding to a given variable receiving from the outer layer. Numerical results demonstrate that the proposed algorithm has significant performance improvement than other baselines. The novel scheme not only reduces the difficulty of problem solving, but also obtains less energy consumption and better performance.

An inverse approach for the calculation of flexibility coefficient of open-side cracks in beam type structures

  • Fallah, N.;Mousavi, M.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.285-297
    • /
    • 2012
  • An inverse approach is presented for calculating the flexibility coefficient of open-side cracks in the cross sectional of beams. The cracked cross section is treated as a massless rotational spring which connects two segments of the beam. Based on the Euler-Bernoulli beam theory, the differential equation governing the forced vibration of each segment of the beam is written. By using a mathematical manipulation the time dependent differential equations are transformed into the static substitutes. The crack characteristics are then introduced to the solution of the differential equations via the boundary conditions. By having the time history of transverse response of an arbitrary location along the beam, the flexibility coefficient of crack is calculated. The method is applied for some cracked beams with solid rectangular cross sections and the results obtained are compared with the available data in literature. The comparison indicates that the predictions of the proposed method are in good agreement with the reported data. The procedure is quite general so as to it can be applicable for both single-side crack and double-side crack analogously. Hence, it is also applied for some test beams with double-side cracks.

Vibration and Stability Analysis of Composite Spinning Shafts (복합재료 회전축의 진동 및 안정성 해석)

  • Seo, Jung-Seok;An, Chang-Gi;Park, Sang-Yoon;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.7
    • /
    • pp.510-517
    • /
    • 2015
  • The free vibration and stability analysis of a spinning composite shaft modelled as a thin-walled closed beam is performed for several design parameters, such as ply angle, aspect ratio, and spin speed. The governing equations of spinning shafts based on the Timoshenko beam theory are derived via Hamilton's variational principle. Coriolis acceleration and anisotropy of constituent materials are incorporated in the derivation. The equations of motion are then transformed to the standard form of an eigenvalue problem for free vibration and stability analysis. Analytical results both for uniform circular cylindrical shaft and rectangular cross-section shaft are obtained by using extended Galerkin method, and the results are compared with those from FEM ANSYS analysis for a verification.

Stress intensity factors for double-edged cracked steel beams strengthened with CFRP plates

  • Wang, Hai-Tao;Wu, Gang;Pan, Yu-Yang;Zakari, Habeeb M.
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.629-640
    • /
    • 2019
  • This paper presents a theoretical and finite element (FE) study on the stress intensity factors of double-edged cracked steel beams strengthened with carbon fiber reinforced polymer (CFRP) plates. By simplifying the tension flange of the steel beam using a steel plate in tension, the solutions obtained for the stress intensity factors of the double-edged cracked steel plate strengthened with CFRP plates were used to evaluate those of the steel beam specimens. The correction factor α1 was modified based on the transformed section method, and an additional correction factor φ was introduced into the expressions. Three-dimensional FE modeling was conducted to calculate the stress intensity factors. Numerous combinations of the specimen geometry, crack length, CFRP thickness and Young's modulus, adhesive thickness and shear modulus were analyzed. The numerical results were used to investigate the variations in the stress intensity factor and the additional correction factor φ. The proposed expressions are a function of applied stress, crack length, the ratio between the crack length and half the width of the tension flange, the stiffness ratio between the CFRP plate and tension flange, adhesive shear modulus and thickness. Finally, the proposed expressions were verified by comparing the theoretical and numerical results.

A Study on the Behavior Characteristics of Large Deep Foundations (대형 깊은 기초의 지지거동 특성에 관한 연구)

  • Park, Choon-Sik;Jung, Kwang-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.83-91
    • /
    • 2020
  • In this study, the characteristics of support behavior according to the change of ground condition of the cast-in-place pile and the large Caisson foundation, which are increasingly used as foundations of large structures and bridges. the allowable bearing capacity calculated using the yield load analysis method was analyzed to calculate similar allowable bearing capacity for each method. In addition, the allowable bearing capacity calculated by the ultimate load analysis method was found to have a large difference in bearing capacity for each method. Through this point, it can be usefully used as an empirical formula for evaluating the settlement characteristics of piles in future design and construction. In addition, as a result of examining the ground force distribution during sedimentation of large caissons, the section of the weathered rock layer showed almost constant ground force distribution as ground forces decreased after yield occurred at the base corner. And in the bed rock layer section, the foundation's center was transformed into a ground force in the form of a convex downward due to an increase in the ground resistance of the central part. Using these results, the theory previously presented by Fang (1991) and Kőgler (1936) was proved.