References
- Abualnaja, K.M. (2020), "Numerical treatment of a physical problem in fluid film flow using the differential transformation method", Int. J. Modern Phys. C, 31(05), 87-96. https://doi.org/10.1142/S0129183120500679.
- AbuGazia, M., El Damatty, A.A., Dai, K., Lu, W. and Ibrahim, A. (2020), "Numerical model for analysis of wind turbines under tornadoes", Eng., Struct., 223, 54-67. https://doi.org/10.1016/j.engstruct.2020.111157.
- Adeleye, D.O.A., Yusuf, M. and Balogun, O. (2020), "Dynamic analysis of viscoelastic circular diaphragm of a MEMS capacitive pressure sensor using modified differential transformation method", Karbala Int. J. Modern Sci., 6(3), 65-78. https://doi.org/10.33640/2405-609X.1706.
- Adhikari, S. and Bhattacharya, S. (2012), "Dynamic analysis of wind turbine towers on flexible foundations", Shock Vib., 19(1), 37-56. https://doi.org/10.3233/SAV-2012-0615.
- Anup, K., Whale, J., Evans S.P. and Clausen, P.D. (2020), "An investigation of the impact of wind speed and turbulence on small wind turbine operation and fatigue loads", Renew. Energy, 146, 87-98. https://doi.org/10.1016/j.renene.2019.06.124.
- Atangana, A. and Araz, S.I. (2020), "New numerical method for ordinary differential equations: Newton polynomial", J. Comput. Appl. Mathem., 372, 112-122. https://doi.org/10.1016/j.cam.2019.112622.
- Bekiryazici, Z., Merdan, M. and Kesemen, K. (2020), "Modification of the random differential transformation method and its applications to compartmental models", Communications Statistics-Theory Methods, 1-22. https://doi.org/10.1080/03610926.2020.1713372
- Bermudez, A., Gomez, D., Pineiro, M. and Salgado, P. (2020), "A novel numerical method for accelerating the computation of the steady-state in induction machines", Comput. Mathem. Appl., 79(2), 274-292. https://doi.org/10.1016/j.camwa.2019.06.032.
- Bervillier, C. (2012), "Status of the differential transformation method", Appl. Mathem. Comput., 218(20), 10158-10170. https://doi.org/10.1016/j.amc.2012.03.094.
- Dado, M. and Al-Sadder, S. (2005), "A new technique for large deflection analysis of non-prismatic cantilever beams", Mech. Res. Commun., 32(6), 692-703. https://doi.org/10.1016/j.mechrescom.2005.01.004.
- Dong, L., Sun L.X. and Qin, M. (2012), "Applying transfer matrix method in mode analysis of wind turbine", Advan. Mater. Res., 512, 686-689. https://doi.org/10.4028/www.scientific.net/AMR.512-515.686
- Feyzollahzadeh, M. and Mahmoodi, M. (2016), "Dynamic analysis of offshore wind turbine towers with fixed monopile platform using the transfer matrix method", J. Solid Mech., 8(1), 130-151.
- Feyzollahzadeh, M., Mahmoodi, M. Yadavar-Nikravesh, S.M. and Jamali, J. (2016), "Wind load response of offshore wind turbine towers with fixed monopile platform", J. Wind Eng. Ind. Aerod., 158, 122-138. https://doi.org/10.1016/j.jweia.2016.09.007.
- Fryklund, F., Kropinski, M.C.A. and Tornberg, A.K. (2020), "An integral equation-based numerical method for the forced heat equation on complex domains", Advan. Comput. Mathem., 46(5), 1-36. https://doi.org/10.1007/s10444-020-09804-z.
- Ghaderi, M., Ghaffarzadeh, H. and Maleki, V.A. (2015), "Investigation of vibration and stability of cracked columns under axial load", Earthq. Struct., 9(6), 1181-1192. http://dx.doi.org/10.12989/eas.2015.9.6.1181.
- Gireesha, B. and Sowmya, G. (2020), "Heat transfer analysis of an inclined porous fin using differential transform method", Int. J. Ambient Energy, 89, 1-7. https://doi.org/10.1080/01430750.2020.1818619.
- Hamada, Y.M. (2020), "Solution of a new model of fractional telegraph point reactor kinetics using differential transformation method", Appl. Mathem. Modelling, 78, 297-321. https://doi.org/10.1016/j.apm.2019.10.001.
- Jahanghiry, R., Yahyazadeh, R., Sharafkhani, N. and Maleki, V.A. (2016), "Stability analysis of FGM microgripper subjected to nonlinear electrostatic and temperature variation loadings", Sci. Eng. Compos. Mater., 23(2), 199-207. https://doi.org/10.1515/secm-2014-0079.
- Liu, H., Li, Y., Duan, Z. and Chen, C. (2020), "A review on multi-objective optimization framework in wind energy forecasting techniques and applications", Energy Convers. Management, 224, 11-24. https://doi.org/10.1016/j.enconman.2020.113324.
- Makarios, T.K. and Baniotopoulos, C.C. (2014), "Wind energy structures: modal analysis by the continuous model approach", J. Vib. Control, 20(3), 395-405. https://doi.org/10.1177/1077546312463761.
- Makarios, T.K. and Baniotopoulos, C.C. (2015), "Modal analysis of wind turbine tower via its continuous model with partially fixed foundation", Int. J. Innov. Res. Advan. Eng., 2(1), 14-25.
- Makarios, T.K., Efthymiou, E. and Baniotopoulos, C.C. (2016), "On the torsional-translational response of wind turbine structures", Arab. J. Sci. Eng., 41(4), 1241-1249. https://doi.org/10.1007/s13369-015-1911-7.
- Maleki, V.A. and Mohammadi, N. (2017), "Buckling analysis of cracked functionally graded material column with piezoelectric patches", Smart Mater. Struct., 26(3), 035-041. https://doi.org/10.1088/1361-665X/aa5324.
- Malz, E.C., Hedenus, F., Goransson, L., Verendel, V. and Gros, S. (2020), "Drag-mode airborne wind energy vs. wind turbines: An analysis of power production, variability and geography", Energy, 193, 116-125. https://doi.org/10.1016/j.energy.2019.116765
- Manenti, S. and Petrini, F. (2010), "Dynamic analysis of an offshore wind turbine: wind-waves nonlinear interaction", Earth Space 2010: Eng Sci., Construct. Operat. Challenging Environm., 2014-2026.
- Mawphlang, B.R.K.L.L., Ghimire, M.P., Rai, D.P. and Patra, P. K. (2020), "Buckling behavior of nonuniform carbon nanotubes using nonlocal elasticity theory and the differential transformation method", Int. Nano Lett., 43, 56-79. https://doi.org/10.1007/s40089-020-00319-5.
- Meng, C., Su, M. and Wang, S. (2013), "An investigation on dynamic characteristics of a gas turbine rotor using an improved transfer matrix method", J. Eng. Gas Turbines Power, 135(12), 78-90. https://doi.org/10.1115/1.4025234.
- Mutyalarao, M., Bharathi, D. and Rao, B.N. (2010), "Large deflections of a cantilever beam under an inclined end load," Appl. Mathem. Comput., 217(7), 3607-3613. https://doi.org/10.1016/j.amc.2010.09.021.
- Rajasekaran, S. (2009), Structural Dynamics of Earthquake Engneering Theory and Applcation Using Mathematica and Matlab'India, Woodhead Publshing
- Rezaei, E., Tabesh, A. and Ebrahimi, M. (2012), "Dynamic model and control of DFIG wind energy systems based on power transfer matrix", IEEE Transactions Power Delivery, 27(3), 1485-1493. https://doi.org/10.1109/TPWRD.2012.2195685.
- Rui, X., Wang, G. and Zhang, J. (2018), Transfer Matrix Method for Multibody Systems: Theory and Applications, John Wiley & Sons.
- Schaffarczyk, A. (2020), Types of wind turbines. Introduction to Wind Turbine Aerodynamics, Springer: 7-25.
- Sobamowo, M.G., Yinusa, A.A., Adeleye, O.A., Alozie, S.I., Salawu, S.A. and Salami, M.O. (2020), "On the efficiency of differential transformation method to the solutions of large amplitude nonlinear oscillation systems", World Scientific News, 139(1), 1-60.
- Wang, L. and Ishihara, T. (2020), "A study of the effects of foundation uplift on the seismic loading of wind turbine tower and shallow foundation using a new dynamic Winkler model", Eng. Struct., 219, 110-125. https://doi.org/10.1016/j.engstruct.2020.110745.
- Wang, S., Huang, Y., Li, L., Liu, C. and Zhang, D. (2017), "Dynamic analysis of wind turbines including nacelle-tower-foundation interaction for condition of incomplete structural parameters", Advan. Mech. Eng., 9(3), 43-57. https://doi.org/10.1177/1687814017692940.
- Yusof, A. and Mohamed, M. (2020), Vertical Axis Wind Turbines: An Overview, InECCE2019, Springer, 821-835.
- Zhou, J. (1986), Differential transformation and its applications for electrical circuits, Huazhong University Press, Wuhan, China.