Browse > Article
http://dx.doi.org/10.12989/scs.2021.39.5.493

Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM  

Madenci, Emrah (Department of Civil Engineering, Necmettin Erbakan University)
Publication Information
Steel and Composite Structures / v.39, no.5, 2021 , pp. 493-509 More about this Journal
Abstract
There is not enough mixed finite element method (MFEM) model developed for static and dynamic analysis of functionally graded material (FGM) beams in the literature. The main purpose of this study is to develop a reliable and efficient computational modeling using an efficient functional in MFEM for free vibration and static analysis of FGM composite beams subject to high order shear deformation effects. The modeling of material properties was performed using mixture rule and Mori-Tanaka scheme which are more realistic determination techniques. This method based on the assumption that a two phase composite material consisting of matrix reinforced by spherical particles, randomly distributed in the beam. To explain the displacement components of the shear deformation effects, it was accepted that the shear deformation effects change sinusoidal. Partial differential field equations were obtained with the help of variational methods and then these equations were transformed into a novel functional for FGM beams with the help of Gateaux differential derivative operator. Thanks to the Gateaux differential method, the compatibility of the field equations was checked, and the field equations and boundary conditions were reflected to the function. A MFEM model was developed with a total of 10 degrees of freedom to apply the obtained functional. In the numerical applications section, free vibration and flexure problems solutions of FGM composite beams were compared with those predicted by other theories to show the effects of shear deformation, thickness changing and boundary conditions.
Keywords
functionally graded material; finite element method; high order shear deformation beam theory; free vibration;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Allam, O., Draiche, K., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S., Adda Bedia, E. and Tounsi, A. (2020), "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput. Concrete, 26(2), 185-201. https://doi.org/10.12989/cac.2020.26.2.185.   DOI
2 Li, L., Liao, W.H., Zhang, D. and Zhang, Y. (2019), "Vibration control and analysis of a rotating flexible FGM beam with a lumped mass in temperature field", Compos. Struct., 208, 244-260. https://doi.org/10.1016/j.compstruct.2018.09.070.   DOI
3 Akoz, A. and Kadioglu, F. (1996), "The mixed finite element solution of circular beam on elastic foundation", Comput. Struct., 60(4), 643-651. https://doi.org/10.1016/0045-7949(95)00418-1.   DOI
4 Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., 29(3), 363-377. https://doi.org/10.12989/scs.2018.29.3.363.   DOI
5 Nguyen, T.K., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B: Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011.   DOI
6 Nguyen, T.T., Kim, N.I. and Lee, J. (2016), "Free vibration of thin-walled functionally graded open-section beams", Compos. Part B: Eng., 95, 105-116. https://doi.org/10.1016/j.compositesb.2016.03.057   DOI
7 Ozutok, A., Madenci, E. and Kadioglu, F. (2014), "Free vibration analysis of angle-ply laminate composite beams by mixed finite element formulation using the Gateaux differential", Sci. Eng. Compos. Mater., 21(2), 257-266. https://doi.org/10.1515/secm-2013-0043.   DOI
8 Ozutok, A. and Madenci, E. (2013), "Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation", Int. J. Struct. Stab. Dynam., 13(2), 1250056. https://doi.org/10.1142/S0219455412500563.   DOI
9 Ghayesh, M.H. (2019), "Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams", Compos. Struct., 225, 110974. https://doi.org/10.1016/j.compstruct.2019.110974.   DOI
10 Ghayesh, M.H. (2018), "Nonlinear vibrations of axially functionally graded Timoshenko tapered beams", J. Comput. Nonlinear Dynam., 13(4). https://doi.org/10.1115/1.4039191.   DOI
11 Hadji, L., Meziane, M., Abdelhak, Z., Daouadji, T.H. and Bedia, E. (2016), "Static and dynamic behavior of FGM plate using a new first shear deformation plate theory", Struct. Eng. Mech., 57(1), 127-140. https://doi.org/10.12989/sem.2016.57.1.127.   DOI
12 Gemi, L., Kara, M. and Avci, A. (2016), "Low velocity impact response of prestressed functionally graded hybrid pipes", Compos. Part B: Eng., 106, 154-163. https://doi.org/10.1016/j.compositesb.2016.09.025.   DOI
13 Golmakani, M. and Kadkhodayan, M. (2011), "Nonlinear bending analysis of annular FGM plates using higher-order shear deformation plate theories", Compos. Struct., 93(2), 973-982. https://doi.org/10.1016/j.compstruct.2010.06.024.   DOI
14 Hadji, L., Khelifa, Z. and El Abbes, A.B. (2016), "A new higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0.   DOI
15 Hussain, M., Naeem, M.N., Khan, M.S. and Tounsi, A. (2020), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comput. Concrete, 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411.   DOI
16 Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Design. 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007.   DOI
17 Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.   DOI
18 Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", Steel Compos. Struct., 37(6), 695. http://dx.doi.org/10.12989/scs.2020.37.6.695.   DOI
19 Aribas, U.N., Ermis, M., Eratli, N. and Omurtag, M.H. (2019), "The static and dynamic analyses of warping included composite exact conical helix by mixed FEM", Compos. Part B: Eng., 160, 285-297. https://doi.org/10.1016/j.compositesb.2018.10.018.   DOI
20 Arioui, O., Belakhdar, K., Kaci, A. and Tounsi, A. (2018), "Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials", Steel Compos. Struct., 27(6), 777-788. https://doi.org/10.12989/scs.2018.27.6.777.   DOI
21 Badriev, I., Bujanov, V.J., Makarov, M. and Kalacheva, N. (2019). "Gateaux and Frechet derivatives of the operator of geometrically nonlinear bending problem of sandwich plate", J. Phys.: Conference Series. https://doi.org/10.1088/1742-6596/1158/2/022015.   DOI
22 Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091.   DOI
23 Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.   DOI
24 Kahya, V. and Turan, M. (2018), "Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element", Compos. Part B: Eng., 146, 198-212. https://doi.org/10.1016/j.compositesb.2018.04.011.   DOI
25 Tang, Y., Lv, X. and Yang, T. (2019), "Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration", Compos. Part B: Eng., 156, 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.   DOI
26 Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.   DOI
27 Ma, L. and Wang, T. (2003), "Nonlinear bending and postbuckling of a functionally graded circular plate under mechanical and thermal loadings", Int. J. Solid. Struct., 40(13-14), 3311-3330. https://doi.org/10.1016/S0020-7683(03)00118-5.   DOI
28 Shokrieh, M. and Rafiee, R. (2010), "A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites", Mech. Compos. Mater., 46(2), 155-172. https://doi.org/10.1007/s11029-010-9135-0.   DOI
29 Hadji, L., Daouadji, T., Tounsi, A. and Bedia, E. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507.   DOI
30 Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2020), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete, 26(5), 439-450. https://doi.org/10.12989/cac.2020.26.5.439.   DOI
31 Yang, J., Liew, K. and Kitipornchai, S. (2005), "Stochastic analysis of compositionally graded plates with system randomness under static loading", Int. J. Mech. Sci., 47(10), 1519-1541. https://doi.org/10.1016/j.ijmecsci.2005.06.006.   DOI
32 Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Adda Bedia, E., Mahmoud, S. and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), 63-74. https://doi.org/10.12989/cac.2020.26.1.063.   DOI
33 Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica. 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.   DOI
34 Reddy, J.N. (2004), Mechanics of laminated composite plates and shells: theory and analysis, CRC press
35 Tarfaoui, M., El Moumen, A. and Lafdi, K. (2017), "Progressive damage modeling in carbon fibers/carbon nanotubes reinforced polymer composites", Compos. Part B: Eng., 112, 185-195. https://doi.org/10.1016/j.compositesb.2016.12.056.   DOI
36 Tarfaoui, M., Lafdi, K. and El Moumen, A. (2016), "Mechanical properties of carbon nanotubes based polymer composites", Compos. Part B: Eng., 103, 113-121. https://doi.org/10.1016/j.compositesb.2016.08.016.   DOI
37 Thai, H.T. and Kim, S.E. (2013), "A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates", Compos. Struct., 96, 165-173. https://doi.org/10.1016/j.compstruct.2012.08.025.   DOI
38 Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.   DOI
39 Thom, T.T. and Kien, N.D. (2018), "Free vibration analysis of 2-D FGM beams in thermal environment based on a new third-order shear deformation theory", Vietnam J. Mech., 40(2), 121-140.
40 Zhang, D.G. (2013), "Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory", Compos. Struct., 100, 121-126. https://doi.org/10.1016/j.compstruct.2012.12.024.   DOI
41 Zozulya, V. (2019), "Exploration of the high order theory for functionally graded beams based on Legendre's polynomial expansion", Compos. Part B: Eng., 158 373-383. https://doi.org/10.1016/j.compositesb.2018.10.006.   DOI
42 Li, X.F., Wang, B.L. and Han, J.C. (2010), "A higher-order theory for static and dynamic analyses of functionally graded beams", Arch. Appl. Mech., 80(10), 1197-1212. https://doi.org/10.1007/s00419-010-0435-6.   DOI
43 Anirudh, B., Ganapathi, M., Anant, C. and Polit, O. (2019), "A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling", Compos. Struct., 222, 110899. https://doi.org/10.1016/j.compstruct.2019.110899.   DOI
44 Tounsi, A., Al-Dulaijan, S., Al-Osta, M.A., Chikh, A., Al-Zahrani, M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.   DOI
45 Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.   DOI
46 Vainberg, M. (1974), Variational and Monotonic Operator Methods in the Theory of Nonlinear Equations, Wiley, New York
47 Viola, E., Tornabene, F. and Fantuzzi, N. (2013), "General higherorder shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels", Compos. Struct., 95, 639-666. https://doi.org/10.1016/j.compstruct.2012.08.005.   DOI
48 Kitipornchai, S., Yang, J. and Liew, K. (2006), "Random vibration of the functionally graded laminates in thermal environments", Comput. Method. Appl. Mech. Eng., 195(9-12), 1075-1095. https://doi.org/10.1016/j.cma.2005.01.016.   DOI
49 Li, W., Ma, H. and Gao, W. (2019), "A higher-order shear deformable mixed beam element model for accurate analysis of functionally graded sandwich beams", Compos. Struct., 221, 110830. https://doi.org/10.1016/j.compstruct.2019.04.002.   DOI
50 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.   DOI
51 Castellano, A., Foti, P., Fraddosio, A., Marzano, S. and Piccioni, M.D. (2014), "Mechanical characterization of CFRP composites by ultrasonic immersion tests: Experimental and numerical approaches", Compos. Part B: Eng., 66, 299-310. https://doi.org/10.1016/j.compositesb.2014.04.024   DOI
52 Aria, A. and Friswell, M. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B: Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071.   DOI
53 Ghayesh, M.H. (2019), "Mechanics of viscoelastic functionally graded microcantilevers", Eur. J. Mech. - A/Solids, 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001.   DOI
54 Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.   DOI
55 El Moumen, A., Tarfaoui, M., Nachtane, M. and Lafdi, K. (2019), "Carbon nanotubes as a player to improve mechanical shock wave absorption", Compos. Part B: Eng., 164, 67-71. https://doi.org/10.1016/j.compositesb.2018.11.072.   DOI
56 Tornabene, F. and Viola, E. (2009), "Free vibration analysis of functionally graded panels and shells of revolution", Meccanica, 44(3), 255-281. https://doi.org/10.1007/s11012-008-9167-x.   DOI
57 Vo, T.P., Thai, H.T., Nguyen, T.K. and Inam, F. (2014), "Static and vibration analysis of functionally graded beams using refined shear deformation theory", Meccanica, 49(1), 155-168. https://doi.org/10.1007/s11012-013-9780-1   DOI
58 Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "Static behaviour of functionally graded sandwich beams using a quasi-3D theory", Compos. Part B: Eng., 68, 59-74. https://doi.org/10.1016/j.compositesb.2014.08.030.   DOI
59 Wu, D., Gao, W., Hui, D., Gao, K. and Li, K. (2018), "Stochastic static analysis of Euler-Bernoulli type functionally graded structures", Compos. Part B: Eng., 134, 69-80. https://doi.org/10.1016/j.compositesb.2017.09.050.   DOI
60 Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Method. Appl. M., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.   DOI
61 Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes", Compos. Part B: Eng., 115, 449-476. https://doi.org/10.1016/j.compositesb.2016.07.011.   DOI
62 Tornabene, F., Liverani, A. and Caligiana, G. (2011), "FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: a 2-D GDQ solution for free vibrations", Int. J. Mech. Sci., 53(6), 446-470. https://doi.org/10.1016/j.ijmecsci.2011.03.007.   DOI
63 Tornabene, F. and Viola, E. (2013), "Static analysis of functionally graded doubly-curved shells and panels of revolution", Meccanica, 48(4), 901-930. https://doi.org/10.1007/s11012-012-9643-1.   DOI
64 Karamanli, A. and Vo, T.P. (2018), "Size dependent bending analysis of two directional functionally graded microbeams via a quasi-3D theory and finite element method", Compos. Part B: Eng., 144, 171-183. https://doi.org/10.1016/j.compositesb.2018.02.030.   DOI
65 Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.   DOI
66 Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806.   DOI
67 Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.   DOI
68 Tornabene, F., Viola, E. and Inman, D.J. (2009), "2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures", J. Sound Vib., 328(3), 259-290. https://doi.org/10.1016/j.jsv.2009.07.031.   DOI
69 Frikha, A., Hajlaoui, A., Wali, M. and Dammak, F. (2016), "A new higher order C0 mixed beam element for FGM beams analysis", Compos. Part B: Eng., 106, 181-189. https://doi.org/10.1016/j.compositesb.2016.09.024.   DOI
70 Tornabene, F., Viola, E. and Fantuzzi, N. (2013), "General higher-order equivalent single layer theory for free vibrations of doubly-curved laminated composite shells and panels", Compos. Struct., 104, 94-117. https://doi.org/10.1016/j.compstruct.2013.04.009.   DOI
71 Yousfi, M., Atmane, H.A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., 66(3), 353-368. https://doi.org/10.12989/sem.2018.66.3.353.   DOI
72 Cao, D., Gao, Y., Yao, M. and Zhang, W. (2018), "Free vibration of axially functionally graded beams using the asymptotic development method", Eng. Struct., 173, 442-448. https://doi.org/10.1016/j.engstruct.2018.06.111.   DOI
73 Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164.   DOI
74 Bouderba, B. (2018), "Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory", Steel Compos. Struct., 27(3), 311-325. https://doi.org/10.12989/scs.2018.27.3.311.   DOI
75 Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.   DOI
76 Chen, M., Jin, G., Zhang, Y., Niu, F. and Liu, Z. (2019), "Three-dimensional vibration analysis of beams with axial functionally graded materials and variable thickness", Compos. Struct., 207, 304-322. https://doi.org/10.1016/j.compstruct.2018.09.029.   DOI
77 Ozutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013.   DOI
78 Pradhan, K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B: Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027.   DOI
79 Pradhan, K.K. and Chakraverty, S. (2015), "Generalized power-law exponent based shear deformation theory for free vibration of functionally graded beams", Appl. Math. Comput.. 268, 1240-1258. https://doi.org/10.1016/j.amc.2015.07.032.   DOI
80 Castellano, A., Fraddosio, A. and Piccioni, M.D. (2018), "Quantitative analysis of QSI and LVI damage in GFRP unidirectional composite laminates by a new ultrasonic approach", Compos. Part B: Eng., 151, 106-117. https://doi.org/10.1016/j.compositesb.2018.06.003.   DOI
81 Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E., Mahmoud, S. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concrete, 26(3), 213-226. https://doi.org/10.12989/cac.2020.26.3.213.   DOI
82 Reddy, J.N. (2002), Energy principles and variational methods in applied mechanics, John Wiley & Sons
83 Rafiee, R. (2013), "Experimental and theoretical investigations on the failure of filament wound GRP pipes", Compos. Part B: Eng., 45(1), 257-267. https://doi.org/10.1016/j.compositesb.2012.04.009.   DOI
84 Rafiee, R., Ghorbanhosseini, A. and Rezaee, S. (2019), "Theoretical and numerical analyses of composite cylinders subjected to the low velocity impact", Compos. Struct., 226, 111230. https://doi.org/10.1016/j.compstruct.2019.111230.   DOI
85 Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a fourunknown refined integral plate theory", Comput. Concrete, 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225.   DOI
86 Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E., Mahmoud, S. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.   DOI
87 Shen, H.S. (2016), Functionally graded materials: nonlinear analysis of plates and shells, CRC press
88 Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A. and Bedia, E. (2016), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617.   DOI
89 Oden, J.T. and Reddy, J.N. (1976), "On mixed finite element approximations", SIAM J. Numer. Anal., 13(3), 393-404. https://doi.org/10.1137/0713035.   DOI
90 Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-Spline finite strip method", Steel Compos. Struct., 34(3), 361-376. https://doi.org/10.12989/scs.2020.34.3.361.   DOI
91 Su, Z., Jin, G. and Ye, T. (2018), "Vibration analysis of multiple-stepped functionally graded beams with general boundary conditions", Compos. Struct., 186, 315-323. https://doi.org/10.1016/j.compstruct.2017.12.018.   DOI
92 Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng. Design, 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.   DOI
93 Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92(10), 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008.   DOI
94 Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.   DOI
95 Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.   DOI
96 Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.   DOI
97 Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.   DOI
98 Rafiee, R. and Eskandariyun, A. (2017), "Comparative study on predicting Young's modulus of graphene sheets using nano-scale continuum mechanics approach", Physica E: Low-Dimensional Syst. Nanostruct., 90, 42-48. https://doi.org/10.1016/j.physe.2017.03.006.   DOI
99 Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Adda Bedia, E. and Mahmoud, S. (2020), "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions", Steel Compos. Struct., 36(3), 355-367. https://doi.org/10.12989/scs.2020.36.3.355.   DOI
100 Mollamahmutoglu, C. and Mercan, A. (2019), "A novel functional and mixed finite element analysis of functionally graded micro-beams based on modified couple stress theory", Compos. Struct., 223, 110950. https://doi.org/10.1016/j.compstruct.2019.110950.   DOI
101 Daouadj, T.H. and Adim, B. (2017), "Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory", Struct. Eng. Mech., 61(1), 49-63. https://doi.org/10.12989/sem.2017.61.1.049.   DOI
102 Darilmaz, K. (2015), "Vibration analysis of functionally graded material (FGM) grid systems", Steel Compos. Struct., 18(2), 395-408. https://doi.org/10.12989/scs.2015.18.2.395.   DOI
103 Fariborz, J. and Batra, R. (2019), "Free vibration of bi-directional functionally graded material circular beams using shear deformation theory employing logarithmic function of radius", Compos. Struct., 210, 217-230. https://doi.org/10.1016/j.compstruct.2018.11.036.   DOI
104 Gan, B.S., Trinh, T.H., Le, T.H. and Nguyen, D.K. (2015), "Dynamic response of non-uniform Timoshenko beams made of axially FGM subjected to multiple moving point loads", Struct. Eng. Mech., 53(5), 981-995. https://doi.org/10.12989/sem.2015.53.5.981.   DOI
105 Akoz, A., Omurtag, M. and Dogruoglu, A. (1991), "The mixed finite element formulation for three-dimensional bars", Int. J. Solid. Struct., 28(2), 225-234. https://doi.org/10.1016/0020-7683(91)90207-V.   DOI
106 Akoz, A. and Ozutok, A. (2000), "A functional for shells of arbitrary geometry and a mixed finite element method for parabolic and circular cylindrical shells", Int. J. Numer. Method. Eng., 47(12), 1933-1981. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<1933::AID-NME860>3.0.CO;2-0.   DOI
107 Akoz, Y. and Kadioglu, F. (1999), "The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic timoshenko beams", Int. J. Numer. Method. Eng., 44(12), 1909-1932. https://doi.org/10.1002/(SICI)1097-0207(19990430)44:12<1909::AID-NME573>3.0.CO;2-P.   DOI
108 Ferreira, A., Batra, R., Roque, C., Qian, L. and Martins, P. (2005), "Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method", Compos. Struct., 69(4), 449-457. https://doi.org/10.1016/j.compstruct.2004.08.003.   DOI
109 Filippi, M., Carrera, E. and Zenkour, A. (2015), "Static analyses of FGM beams by various theories and finite elements", Compos. Part B: Eng., 72, 1-9. https://doi.org/10.1016/j.compositesb.2014.12.004.   DOI
110 El Moumen, A., Tarfaoui, M., Lafdi, K. and Benyahia, H. (2017), "Dynamic properties of carbon nanotubes reinforced carbon fibers/epoxy textile composites under low velocity impact", Compos. Part B: Eng.. 125, 1-8. https://doi.org/10.1016/j.compositesb.2017.05.065.   DOI