• Title/Summary/Keyword: transcendental functions

Search Result 55, Processing Time 0.023 seconds

ON TRANSCENDENTAL MEROMORPHIC SOLUTIONS OF CERTAIN TYPES OF DIFFERENTIAL EQUATIONS

  • Banerjee, Abhijit;Biswas, Tania;Maity, Sayantan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1145-1166
    • /
    • 2022
  • In this paper, for a transcendental meromorphic function f and α ∈ ℂ, we have exhaustively studied the nature and form of solutions of a new type of non-linear differential equation of the following form which has never been investigated earlier: $$f^n+{\alpha}f^{n-2}f^{\prime}+P_d(z,f)={\sum\limits_{i=1}^{k}}{p_i(z)e^{{\alpha}_i(z)},$$ where Pd(z, f) is a differential polynomial of f, pi's and αi's are non-vanishing rational functions and non-constant polynomials, respectively. When α = 0, we have pointed out a major lacuna in a recent result of Xue [17] and rectifying the result, presented the corrected form of the same equation at a large extent. In addition, our main result is also an improvement of a recent result of Chen-Lian [2] by rectifying a gap in the proof of the theorem of the same paper. The case α ≠ 0 has also been manipulated to determine the form of the solutions. We also illustrate a handful number of examples for showing the accuracy of our results.

A Case Study:A Learning System for Finding the Ranges of Transcendental Functions (초월함수 치역을 구하는 문제를 통한 학습시스템 모델에 관한 연구)

  • 김일곤;유석인
    • Korean Journal of Cognitive Science
    • /
    • v.1 no.1
    • /
    • pp.103-127
    • /
    • 1989
  • Learning systems by using examples have been developed which include ALEX, LP, and LEX.Specially Silver's LP systems suggerts the method to use a seyuence of operators, which was applied to the worked example, to sove a symbolic equation.This paper presents the new learning system, called LRD, in which generalization and discrimination steps are suggerted to solv all the problems similar to the worked example.The system LRD is illustrated by the problem of finding the ranges of transcendentral functions and compared to LP and LEX by the problems discussed in them.

MAXIMUM CURVES OF TRANSCENDENTAL ENTIRE FUNCTIONS OF THE FORM $E^{p(z)}$

  • Kim, Jeong-Heon;Kim, Youn-Ouck;Kim, Mi-Hwa
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.451-457
    • /
    • 2011
  • The function f(z) = $e^{p(z)}$ where p(z) is a polynomial of degree n has 2n Julia lines. Julia lines of $e^{p(z)}$ divide the complex plane into 2n equal sectors with the same vertex at the origin. In each sector, $e^{p(z)}$ has radial limits of 0 or innity. Main results of the paper are concerned with maximum curves of $e^{p(z)}$. We deal with some properties of maximum curves of $e^{p(z)}$ and we give some examples of the maximum curves of functions of the form $e^{p(z)}$.

Meromorphic Functions Sharing a Nonzero Value with their Derivatives

  • Li, Xiao-Min;Ullah, Rahman;Piao, Da-Xiong;Yi, Hong-Xun
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.137-147
    • /
    • 2015
  • Let f be a transcendental meromorphic function of finite order in the plane such that $f^{(m)}$ has finitely many zeros for some positive integer $m{\geq}2$. Suppose that $f^{(k)}$ and f share a CM, where $k{\geq}1$ is a positive integer, $a{\neq}0$ is a finite complex value. Then f is an entire function such that $f^{(k)}-a=c(f-a)$, where $c{\neq}0$ is a nonzero constant. The results in this paper are concerning a conjecture of Bruck [5]. An example is provided to show that the results in this paper, in a sense, are the best possible.

Uniqueness of Entire Functions Sharing Polynomials with Their Derivatives

  • Sahoo, Pulak;Biswas, Gurudas
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.519-531
    • /
    • 2018
  • In this paper, we investigate the uniqueness problem of entire functions sharing two polynomials with their k-th derivatives. We look into the conjecture given by $L{\ddot{u}}$, Li and Yang [Bull. Korean Math. Soc., 51(2014), 1281-1289] for the case $F=f^nP(f)$, where f is a transcendental entire function and $P(z)=a_mz^m+a_{m-1}z^{m-1}+{\ldots}+a_1z+a_0({\not{\equiv}}0)$, m is a nonnegative integer, $a_m,a_{m-1},{\ldots},a_1,a_0$ are complex constants and obtain a result which improves and generalizes many previous results. We also provide some examples to show that the conditions taken in our result are best possible.

Polynomial Type Price Sensitive Electricity Load Model (다항식 전력가격부하모형)

  • 최준영;김정훈
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.79-89
    • /
    • 2003
  • A research about finding a new electricity load model that is sensitive to the price of electricity is conducted. This new model i5 polynomial type price sensitive electricity consumption model, while former electricity consumption models have exponential terms or statistic terms. The pattern of electricity consumption of each electricity using devices were identified first, then the proportion of the devices at buses or nodes are investigated, finally weighted sum of electricity consumption and the proportion makes the load model or consumption model of electricity at one bus or node. This new model is easy to use in the simulations or calculations of the electricity consumption, because the arithmetic of functions with polynomial terms are easy compared to the functions with transcendental terms.

Analytic Solution to the Spatial Propagation of the Flexible Structures (유연한 구조물의 공간전파에 관한 해석적 해법)

  • Seok, Jin-Yeong;Jeong, Eun-Tae;Kim, Yu-Dan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2040-2047
    • /
    • 2001
  • In this paper, a singularity problem of the state transition matrix is investigated in the spatial propagation when the spatial matrix differential equation is constructed via time finite element analysis. A parametric study shows that the degree of singularity of the state transition matrix depends on the degree of flexibility of the structures. As an alternative to avoid the numerical problems due to the singularity, an analytic solution fur spatial propagation of the flexible structures is proposed. In the proposed method, the spatial properties of the structure are analytically expressed by a combination of transcendental functions. The analytic solution serves fast and accurate results by eliminating the possibility of the error accumulation caused by the boundary condition. Several numerical examples are shown to validate the effectiveness of the proposed methods.

GROWTH AND FIXED POINTS OF MEROMORPHIC SOLUTIONS OF HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Xu, Jun-Feng;Yi, Hong-Xun
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.747-758
    • /
    • 2009
  • In this paper, we investigate the growth and fixed points of meromorphic solutions of higher order linear differential equations with meromorphic coefficients and their derivatives. Because of the restriction of differential equations, we obtain that the properties of fixed points of meromorphic solutions of higher order linear differential equations with meromorphic coefficients and their derivatives are more interesting than that of general transcendental meromorphic functions. Our results extend the previous results due to M. Frei, M. Ozawa, G. Gundersen, and J. K. Langley and Z. Chen and K. Shon.

Non-homogeneous Linear Differential Equations with Solutions of Finite Order

  • Belaidi, Benharrat
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.105-114
    • /
    • 2005
  • In this paper we investigate the growth of finite order solutions of the differential equation $f^{(k)}\;+\;A_{k-1}(Z)f^{(k-l)}\;+\;{\cdots}\;+\;A_1(z)f^{\prime}\;+\;A_0(z)f\;=\;F(z)$, where $A_0(z),\;{\cdots}\;,\;A_{k-1}(Z)\;and\;F(z)\;{\neq}\;0$ are entire functions. We find conditions on the coefficients which will guarantees the existence of an asymptotic value for a transcendental entire solution of finite order and its derivatives. We also estimate the lower bounds of order of solutions if one of the coefficient is dominant in the sense that has larger order than any other coefficients.

  • PDF

SOME RESULTS ON UNIQUENESS OF MEROMORPHIC SOLUTIONS OF DIFFERENCE EQUATIONS

  • Gao, Zong Sheng;Wang, Xiao Ming
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.959-970
    • /
    • 2017
  • In this paper, we investigate the transcendental meromorphic solutions with finite order of two different types of difference equations $${\sum\limits_{j=1}^{n}}a_jf(z+c_j)={\frac{P(z,f)}{Q(z,f)}}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ and $${\prod\limits_{j=1}^{n}}f(z+c_j)={\frac{P(z,f)}{Q(z,f)}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ that share three distinct values with another meromorphic function. Here $a_j$, $b_k$, $d_l$ are small functions of f and $a_j{\not{\equiv}}(j=1,2,{\ldots},n)$, $b_p{\not{\equiv}}0$, $d_q{\not{\equiv}}0$. $c_j{\neq}0$ are pairwise distinct constants. p, q, n are non-negative integers. P(z, f) and Q(z, f) are two mutually prime polynomials in f.