Bull. Korean Math. Soc. 59 (2022), No. 5, pp. 1145-1166
https://doi.org/10.4134/BKMS.b210637
pISSN: 1015-8634 / eISSN: 2234-3016

ON TRANSCENDENTAL MEROMORPHIC SOLUTIONS OF
CERTAIN TYPES OF DIFFERENTIAL EQUATIONS

ABHUIT BANERJEE, TANIA BISWAS, AND SAYANTAN MAITY

ABSTRACT. In this paper, for a transcendental meromorphic function f
and a € C, we have exhaustively studied the nature and form of solutions
of a new type of non-linear differential equation of the following form
which has never been investigated earlier:

k
F4afm T 4 Pa(, ) = Y pil2)e ),
i=1

where Py(z, f) is a differential polynomial of f, p;’s and «;’s are non-
vanishing rational functions and non-constant polynomials, respectively.
When a = 0, we have pointed out a major lacuna in a recent result of
Xue [17] and rectifying the result, presented the corrected form of the
same equation at a large extent. In addition, our main result is also an
improvement of a recent result of Chen-Lian [2] by rectifying a gap in the
proof of the theorem of the same paper. The case a # 0 has also been
manipulated to determine the form of the solutions. We also illustrate a
handful number of examples for showing the accuracy of our results.

1. Introduction and definitions

Let C denote the field of complex numbers and M(C) be the field of mero-
morphic functions on C. Throughout this paper we consider f € M(C). We
assume that the readers are familiar with basic Nevanlinna theory and usual
notations such as proximity function m(r, f), counting function N(r, f), char-
acteristic function T'(r, f), first and second main theorems, etc (see [4]). Recall
that S(r, f) = o(T(r, f)) as r — oo outside of a possible exceptional set of
finite logarithmic (linear) measure. A meromorphic function « is called a small
function of f if and ounly if T'(r,a) = S(r, f). The order of a meromorphic

function f is denoted by p(f) and defined by p(f) = limsup log? T(rf) gy
r—00

log r
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a € C, the deficiency §(«, f) is defined as d(a, f) = 1 —limsup ngaa}{)- Nowa-
r—00 ’

days differential equation plays a prominent role in many disciplines and so the
study on the different features of differential equation over C has become an
interesting topic. Speculating over the existence of solutions of non-linear dif-
ferential equation and subsequently finding the exact form of the same equation
are really challenging problems. In the present paper we wish to contribute in
this perspective. To this end, we denote by Py(z, f), the non-linear differential
polynomial of f(z) of degree d defined by

(11) P = Y o] (1)

AeA =0
where ay’s are rational functions, A is the index set of non-negative integers
with finite cardinality and A = (Ag, A1, A2, ..., A, ) also d := deg(Py(z, f)) =
n
max {3229 Ai}-
For the last two decades researchers have extensively studied the differential
equation of the following form

(1:2) I+ Palz 1) = pi(2)e ) 4 pa(2)e),

where Py(z, f) is defined as in (1.1) with some restriction on degree d and
p1(z), p2(z) are non-zero rational functions and «q(2), as(z) are non-constant
polynomials. In this paper, we also like to contribute in this aspect under a
more general setting.

2. Backgrounds and main results

In 2006, on the existence of solution of differential equation, Li-Yang [9]
obtained the following result.

Theorem A ([9]). Let n > 4 be an integer. Consider the differential equation
(1.2), where d < n—3, pj(2) (j =1,2) are two non-vanishing polynomials and
a;(2) == ajz (j = 1,2) are two non-zero one degree polynomials such that ot
is not a rational number. Then the equation (1.2) has no transcendental entire
solutions.

In 2011, Li [8] removed the extra supposition “%; is not rational” in Theorem
A and established the form of the meromorphic solution.

Theorem B ([8]). Let n > 2 be an integer. Consider the differential equation
(1.2), whered < n—2, p;(z) (j = 1,2) are two non-zero constants and a;(z) :=
a;z (j = 1,2) are two non-zero one degree polynomials such that o # «o.
If f(2) is a transcendental meromorphic solution of the equation (1.2) and
satisfying N(r, f) = S(r, f), then one of the following holds:

(i) f(2) = co + cre®*/™;

(i) f(2) = co + e2c025/7;
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(iil) f(2) = c1e®*/™ + c2e®2*/" and oy + ay = 0,
where ¢ s a small function of f(z) and c1,ce are constants satisfying ¢ = p1,
cy = p2.

In 2013, considering p;(z), p2(z) as non-vanishing rational functions and
a1(2), az(z) as non-constant polynomials, Liao-Yang-Zhang [11] generalized
Theorem B as follows.

Theorem C ([11]). Let n > 3 be an integer, Py(z, f) be a differential poly-
nomial in f(z) of degree d with rational functions as its coefficients. Suppose
p1(2), p2(z) are non-vanishing rational functions and aq(z),as(z) are non-
constant polynomials. If d < n — 2 and the differential equation (1.2) admits
a meromorphic function solution f(z) with finitely many poles, then 3—:; s a
rational number. Furthermore, only one of the following four cases holds:

(i) f(z) = q(z)ef @), Z—i = 1, where q(2) is a rational function and P(z) is
a polynomial with nP’ = o = ab;

(ii) f(z) = q(2)eP®), either Z—i =" or & where q(z) is a rational function,
k is an integer with 1 < k < d and P(z) is a polynomial with nP’' = o or ab;

(iil) f satisfies the first order linear differential equation ' = (lﬁ + %0/1) f

n p1

+ ¢ and Z—i = 4 or f satisfies the first order linear differential equation

’ ’
! 1 Po 1 7 @y n—1 . . . .
= (HE + EO@) f+y and o= where ¢ is a rational function;

(iv) f(2) = c1(2)e?®) + cp(2)e P*) and Z—i = —1, where ¢1(z),ca(2) are

rational functions and B(z) is a polynomial with nf’ = o or of.
In 2018, Zhang [19] established the following result in this direction.

Theorem D ([19]). Under the same assumption as in Theorem C if n > 4
is an integer, d < n — 3, and the complex differential equation (1.2) admits a
transcendental meromorphic function solution f with finitely many poles, then

afil is a rational number and f(z) must be of the following form:

X

f(2) = a(2)e",
where q(z) is a non-vanishing rational function and P(z) is a non-constant
polynomial. Moreover, only one of the following two cases holds:

(i) G- 1, Pi(z, f) =0 and nP' = o = ob;

A
(ii) % = %, where t is an integer satisfying 1 <t < d, Py(z, f) = p1(z)e**®)

n
£t

p2(2)e®2(*) and nP’ = .

and nP' = oly or S+ =%, where t is an integer satisfying 1 <t < d, Py(z, f) =
2

For more results related to this area readers can see [1,5,6,12-14,16]. We
note that the right hand side of (1.2) consisting of two exponential terms. So
investigations on the case when the right hand side of (1.2) contains three or
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more exponential terms attract the researchers. In this perspective, in 2020,
Xue [17] found the following result:

Theorem E ([17]). Let n > 2 and Py(z, f) be an algebraic differential polyno-
mial in f(z) of degree d < n — 1. Suppose that p;, o are non-zero constants
forj=1,2,3 and |a1| > |ag| > |as|. If f(2) is a transcendental entire solution
of the differential equation

[+ Pa(z, f) = p1e™'” + p2e™** + p3e®”,

then f(z) = a1e®**/™, where a; is non-zero constant such that a} = py, and o
are in one line for j =1,2,3.

Remark 2.1. Although Theorem E is a novel approach in this direction but
we find that there is a major drawback in the same theorem. The following
example shows that Theorem E does not hold good.

Example 2.1. The function f(z) = e* + 1 is a transcendental entire solution
of

PPHaf'f+f —f=e"+T7e¥ +7e
But e* + 1 is not of the form of f(z) given in Theorem E.

Also in 2020, Chen-Lian [2] studied on the differential equation with three
exponential terms in the right hand side and established the following:

Theorem F ([2]). Letn > 5 be an integer, Py(z, f) be a differential polynomial
in f(z) of degree d with rational functions as its coefficients. Suppose p;(z)
(4 = 1,2,3) are non-vanishing rational functions and a;(z) (j = 1,2,3) are
non-constant polynomials such that o/;(z) (j = 1,2,3) are distinct each other.
If d < n—4 and the differential equation
3
f" 4 Paz, f) = pi(z)e® @)

j=1
admits a transcendental meromorphic function solution f with finitely many
poles, then Z—i, z—% are rational numbers and f(z) must be of the following
form:

f(2) = a(2)e"?,

where q(z) is a non-vanishing rational function and P(z) is a non-constant
polynomial. Moreover, there must exist positive integers ly, 11, la with {lo, 11,12}
={1,2,3} and distinct integers ki, ky with 1 < k1, k2 < d such that o @ o :

oy, =n:ky ke, nP' = q) and Py(z, f) = py, (2)e® ) 4 pp (2)e2(2),

Remark 2.2. First of all we would like to mention that Chen-Lian [2] did not
point out the lacuna of Theorem E, but their result automatically rectifies
Theorem E. Next we note that to prove Theorem F, the basic methods used by
the authors are well known and is same as that adopted in several papers like
[7,11]. The only innovative ideas exhibited by Chen-Lian [2] was to manipulate
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the notion of Cramer’s rule in the proof. Unfortunately, at the time of execution
of Cramer’s rule, Chen-Lian [2] made a mistake. Consider equation (3.2) (see
[2, p. 1067]). In view of Crammer’s rule, if Dy # 0, then only from equation
(3.2), one can write equation (3.3) (see [2, p. 1067]). But in the line before
(3.4), the authors used Dy = 0 in (3.3) to deduce D; = 0, which is not at all
acceptable and so to tackle this situation further investigations are needed.

Next let us accumulate the following points:

(i) From Remark 2.2 we see that the proof of Theorem F is incomplete and
it is high time to dispel all the confusions cropped up from Theorems E-F.

(ii) Considering all the results so far stated, a natural inquisition would be
to investigate the case when the right hand side of the differential equation in
Theorem F contains k-terms.

(iii) In 2011, Li [8] proposed an open question that how to find the solutions
of (1.2), where p;, ps are constants and degree of the differential term Py(z, f)
is equal to n — 1. But till now, without any extra supposition, nobody has been
able to obtain any fruitful result in the literature. So Li’s [8] question is still
open.

In this respect, in view of previous points, considering the special case
772 f" + Py(z, f), it will be interesting to characterize the solutions of a more
general form of differential equation, namely,

k

(2.1) IhHaf" R 4 Palz ) = Y pi2)e™ ),

=1

where a € C, Py(z, f) is defined as in (1.1), p;(2) (i = 1,2,...,k) are non-
vanishing rational functions and «;(z) (¢ = 1,2,. .., k) are distinct non-constant
polynomials.

The above three points are the main motivations of writing this paper. Our
main result is the following:

Theorem 2.1. Consider the non-linear differential equation (2.1) with deg(a;—
;) > 1 (1<i#j<k).

(I) Leta=0 and d <n—k — 1. Then the following two cases hold:
(TA) Considerk =1 andn > 2. If (2.1) admits a meromorphic solution
f with finitely many poles, then f is of the form f(z) = q(z)ef'®),
where q(z) is a non-vanishing rational function and P(z) is a
non-constant polynomial with ¢"(z) = p1(z), nP(z) = a1(z) and
Pd(z, f) =0.
(IB) Consider k > 2 andn > k+2. If (2.1) has a meromorphic solution

f(z) with finitely many poles, then —+ (1 <i # j < k) are rational

numbers and f(z) must be of the form:
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where q(z) is a non-vanishing rational function and P(z) is a non-
constant polynomial.
Also, if we rearrange {1,2,...,k} to {70, 71,...,Tk—1} such that

pi(2)e® ) =p_ (2)e*i1 ) fori=1,2,... k,

then q" = e’AopTO, Ag is any constant with

k—1
TLP’(Z') = o(fro(z) and Pd(z,f) — ZpTi(Z)eaTi(Z).
=1

(IT) Nextlet a #0 and d < n —k — 3. Then the following three cases hold:

(IIA)

(IIB)

(11C)

Suppose k =1 and n > 5. Then the equation (2.1) does not admit
any meromorphic solution with finitely many poles.
Suppose k = 2 and n > 6. If (2.1) has a meromorphic solution

f(2) with finitely many poles, then Z—:l are rational numbers and
2
f(2) must be of the form:

f(z) = a(2)e”,

where q(z) is a non-vanishing rational function and P(z) is a non-
constant polynomial and Py(z, f) = 0. Also,

(i) ¢" = e Bipy, aq" 2(¢' + qP') = e B2p,, % = Lo, where
B; (i =1,2) are constants.
(11) or qn = 67311317 aqn72(q/ _|-qP’) — 6782]727 - = ==
where B; (i =1,2) are constants.
Suppose k > 3 andn > k+4. If (2.1) has a meromorphic solution
f(2) with finitely many poles, then ‘% (1 <i#j<k) are rational

numbers and f(z) must be of the form:

f(z) = a(2)e”,

where q(z) is a non-vanishing rational function and P(z) is a non-
constant polynomial.

Also, if we rearrange {1,2,...,k} to {p,v,k1,K2,y...,Kk—2} such
that pi(z)e™(*) = p#(z)ea“(z), p2(2)e2(®) = p,(2)e* (),
pi(z)e®i®) = pmfz(z)ea”%(z) fori=3,4,....k, thengq"=e Cup,
and ag""*(¢'+qP") = e=“p,, where C,,, C, are any constants with

nP'(z) = a;,(2), (n—1)P'(2) = a,(z) and

k—2
Paz f) = 3 by (2)e:2),
=1

Corollary 2.1. Putting k = 3, in (IB) of Theorem 2.1, we have Theorem F.
Therefore, our result is a huge improvement of Theorem F.
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The following examples show that all conclusions of Theorem 2.1 actually
occurs for the cases a = 0 and a # 0, respectively:

Example 2.2. Let k¥ = 2 and n = 4. Then f(z2) = Zilezzﬁ satisfies the
differential equation

2

4
P pief) = () e LG b

z2+1 (24 1)2 <
where Py(z, f) = f/, a1 = 42? + 5 and ay = 2% + 2. Clearly, Z—:l is rational.
2

Example 2.3. Let k = 2 and n = 6. Then it is easy to verify that f(z) = e
satisfies the differential equation

f6 +(lf4f/ — 642 + 2%6
Note that here Py(z, f) = 0.

Example 2.4. Let £k = 3 and n = 7. Then choosing Py(z, f) = f”, one can
show that f(z) = e¥ satisfies the differential equation

10z
3

20 12: 4 2
p—- 7

ST af*f' + Pa(z f) = ¢ + e + e
The next two examples show that in (I) of Theorem 2.1, the bound d <
n—k—1 can not be extended to d < n—k and it is the best possible estimation.

Example 2.5. Let £k = 2, n = 4 and d = 2. Then it is easy to verify that
f(z) = e* 4+ z + 1 is a solution of the differential equation

FY+ Pa(z, f) = € +4(2 + 1)e™,
where Py(z, f) = —6(z +1)2(f")2 =3(2 + 1)3f" — (2 +1)3f, but €* + 2z + 1 can
not be expressed as g(z)ef(*).
Example 2.6. Let £k = 3, n = 5 and d = 2. Then it is easy to verify that
f(z) = e* — 1 is a solution of the differential equation

f°+ Py(z, f) = € — 5e** + 10,
where Py(z, f) = 10ff' + 5f' + 1, but e* — 1 can not be written as g(z)e?’®).

Notice that, if d < n —k — 1, then the bound n > k 4+ 2 can not be replaced
by n > k+ 1, because in that case the equation (2.1) is not at all a differential
equation. Now if we consider n = k+ 1 and d = n — k, then the next example
shows that the conclusion (IB) of Theorem 2.1 cease to be hold. So we can say
the bound for n is the best possible.
Example 2.7. Let k =4, n =5 and d = 1. Here f(z) = ¢*+2—1 is a solution
of the differential equation
P4+ Py(z, f) =€ +5(z — 1)e** +10(z — 1)%e3 +10(2 — 1)%e*,

where Py(z, f) = —4(z—1)*f" — (2 = 1)*f, but €* + 2 — 1 can not be expressed
as q(z)ef®),
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The following examples show that in (II) of Theorem 2.1, the bound
d <n — k — 3 is sharp.

Example 2.8. Let £k = 3, n = 7 and d = 2. Then it is easy to verify that
f(z) = e* + 1 is a solution of the differential equation

7 7 7
f7—§f5f/+Pd<Zaf):€7Z+§€62+§€52a

where Py(z, f) = —%ff’ — 1, but e* + 1 is not of the form q(z)e”’®). Here we
note that 2=d>n—-k—-3=1.

3. Lemmas

The following lemma can be easily derived from the proof of the Clunie
lemma (see [3,6]).

Lemma 3.1. Let f(z) be a transcendental meromorphic solution of the differ-
ential equation

[ (2)P(z f) = Q(z, f),
where P(z, f),Q(z, f) are polynomials in f and its derivatives such that the

coefficients are small meromorphic functions of f. If the total degree of Q(z, f)
as a polynomial in f and its derivatives is at most n, then

m(r,P(z,f)) :S(T’f)

for all r out of a possible exceptional set of finite logarithmic measure. In
particular, if f is finite order, then

m (r, P(z, f)) = O(log r) asr — oo.

Lemma 3.2 ([15, Cramer’s rule]). Consider the system of linear equation
AX = B, where

ai;p a2 - QAin Z1 b1

a1 Az -+ Q2p T2 by
A= , X = . and B =

an1 Ap2 - Gpp Tn by,

If det(A) # 0, then the system has unique solution

det(A;) det(As) det(A,)
(x1u$27"'7xn): s ey ,
det(A) ’ det(A) det(A)
where
a1 a2 - Qii—1 b1 oaiip1 0 Gin
a1 G2 -+ G2;-1 by agiy1 - agg
A= . . . . for i=1,2,...,n.

an1 Qp2 An,i—1 bn Ani+1 " Ann
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Lemma 3.3 ([18]). Let a;(z) be an entire function of finite order < p. Let
gj(z) be entire and gx(z) — g;(2), (k # j) be a transcendental entire function
or a polynomial of degree greater than p. Then

> a;(2)e ) = ao(2),
j=1
holds only when

ag(z) = a1(z) = = an(z) =0.

Lemma 3.4 ([18, Hadamard’s factorization theorem]). Let f(z) be a mero-
morphic function of finite order p and

f(2) = apz® + ap1 2" - (where ay, #0)
in the neighborhood of z = 0. Suppose that by, by, ... are non-zero zeros of f(z)
and c1,ca, ... are non-zero poles of f(z). Then

) = k) F1(2)
f(2) Poo)

where Py(2) is a canonical product of non-zero zeros of f(z), Pa(z) is a canoni-
cal product of nonzero poles of f(z), and Q(z) is a polynomial of degree at most

p.

4. Proof of theorems

Proof of Theorem 2.1. In view of Remark 2.2, a detail proof is required for the
sake of general reader.

To prove this theorem, we distinguish the following cases:

Case I: Let a = 0. Then we denote

(4.1) h(z) = f" + Pa(z, f).

Let f be a rational solution of the non-linear differential equation (2.1). Then
it is easy to see that h(z) is a small function of p;(2)e*(*) (i =1,2,...,k). As
deg{a;(2) — oj(2)} > 1, so by Lemma 3.3, we get p;(z) =0 (¢ =1,2,...,k),
which contradicts p;(z) (i = 1,2,...,k) are non-vanishing rational functions.

Hence f must be a transcendental.
Now we will show that order of f is finite. As f has finitely many poles, so

nT'(r, f) = m(r, ") + S(r, f)

k
<T < Zm(z)e“i(z)) +m(r, Pa(z, )+ S(r, f)
=1

< Ar"+dT(r, f) + S(r, f),
where n = max{dega;,degas,...,degay}. Hence (n — d)T(r,f) < Ar" +
S(r, f) and f is of finite order.

Sub-case IA: First suppose that & = 1. Then the result follows from
Theorem 1.7 of [10].
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Sub-case IB: Next suppose that k > 2. For k = 2, we refer Theorem D.

So we assume k > 3. Differentiating (2.1), k — 1 times, we get the following
system of equations

k
h= Z pieai7
=1

k
W= lpi+pici] e,
i=1

k
(4.2) W' =3 [pf + 200 + piad + pi(ef)?] e,
: i=1
k
n = 3 (b 40P Qud) + 0 Qu(al )
i=1
+- piQk*l(a;7 aéla cee 7a§k71))i| eo‘i,
where Q;(af, o, ..., ozgj)) are differential polynomials of o with degree j (j =

1,2,...,k—1; i=1,2,... k). From the system (4.2), the determinant of the
coefficient matrix is

P Pk
Ph+piad Pl + Proy,
Dy = : . :
k—1 k—2 k—1 k—2
P Q) + - P P01 () + -
k—1 k—1
+p1Qk71(a/1aaI1/7"'»0‘5 )) +kak71,k71(a;waZ?""al(c ))
It is clear that Dg is a rational function. Let us consider
h D2 Dk
W Ph + p2cty P+ proy,
Dy=| : : - : .
pen P AP TIQueh) 4 T 0w
-1 —1
p?Qk—l(O/malQ/w"’ag )) kak—l(a;wa;clV"Va;c >)

Now we distinguish the following two cases:

Sub-case IB.1: If Dy = 0, then the rank of the coefficient matrix of the
system (4.2) is equal to m < k — 1. As the system of equation has a solution,
so the rank of the augmented matrix

" Dk h
b + 10} - o+ o "
Dy = : g | '
k- k— - .
pg 1)_'_10(1 2)Q1(0/1)+"'+ psc 1)-5-175c 2)Q1(0¢2)+"'+ pk—1)
(k—1) (k-1

Qi1 (c,al, ..ol PRQi1 (. al D)
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must be equal to m < k — 1. So, all k£ x k minors of BB are zero, which implies

p2 e pk: h
Ph + p2ah Pl + pray, s
: . : : =0,
P AT Quen) + o T Qi)
+paQi_1(ah, ... o) Pk Qi1 (0, o a )
which implies, D; = 0.
So,
(4.3) Miyh — Moy b 4 -+ (=1)* 1M A=Y =,
where
Py + P2aiy Pr T Pray,
My = pgk—n +pgk_2)Q1(O/2) 4o p](gk—n 4 p,(f_Q)Ql(Oé;c) 4.
+p2Qr_1(ab,af, ..., aékil)) +pEQr—1(c, a, ..., a,(ckfl))
b2 Pk
P+ 2phaly + pacdy + pa(a)? Pi + 20,0 + Py + pi(af)?
Mz =
Py 4 Y Q) + - P 4 P Qu(ag) + -
+p2Qr1(0h, ..., af V) 1Pk Qu1 (@, af ... afF )
and so
b2 Pk
P+ pacy P+ proy,
My, = : : ;
P4 Vi) + Y e PQu(ag) +
+p2Qr_2(ab,al, ..., aék_Z)) +peQr—2(a), af, ..., a;k_%)

are rational functions.
Substituting the expression (4.1) of h(z) into (4.3), we get
(4.4) My f" = Mo (f™) + -+ (1) M (f1)*D = Qq,

where
Q1 =~ [ M Pa(z. f) ~ M Py, ) + -+ (- M PV )]

is a differential polynomial in f with rational functions as its coefficients and
degree of @1 < d.
One can easily check that
— (t—1
4.5 ny\(t) — n—1pn(t—1) _ - n—1\(2) p(t—1)
(45) (S = (") ny (0, )umhr

=0
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e L R R O Wit A

t—1 i—1
+Z; (t R 1) FO0 {(n = DO LN TN

i=2 A
(F15 - (PO = 0 —2) - = D)

where «y;) are positive integers, Aj1,...,);;—1 are non-negative integers and

sum Y is carried out such that
X

(46) )\j,l + )\j’g —+ -4 )\j,ifl :] and )\j,l + 2)\12 —+ -4 (Z — ].))\j’ifl = 1.

Now we define

(17) =30
fort=1,2,...,k—1; kK > 3. Using (4.7) in (4.4), we have
(4.8) SRR = @y,

where

(4.9) Ry = My f*" = My &+ -+ (1) M &ea.

Asd<n-—k—1and f is finite order, so combining (4.8) with Lemma 3.1 we
get
m(r, R1) = O(logr).
On the other hand, as we assume, f has finitely many poles, so we have
T(r,Ry) =m(r,R1) + N(r, R1) = O(log ),

i.e., Ry is a rational function. Next we study the following two subcases:
Sub-case IB.1.1: If R;(z) =0, then from (4.9) we have

(4.10) My fFt = = [-Mn& + -+ (1) "My €] -

We will show that f has at most finitely many zeros. On the contrary,
suppose that f has infinitely many zeros. So we can consider a point z; such
that f(z1) = 0 but z; is neither a zero nor a pole of Mj; (j =1,2,...,k).

Now let, My # 0. From the construction of ,_; and (4.5) we know &;_1
contains one term, corresponding to ¢ = k — 2 in which, power of f is 0.
Considering this term in £,_1, we see that f'(z1) = 0, which implies z; is a
multiple zero of f of multiplicity p; > 2. It follows that z; is a zero of the left
hand side of (4.10) with multiplicity (k — 1)p1, where as it is a zero of the right
hand side of (4.10) with multiplicity (k — 1)(p1 — 1), a contradiction.

Next, assume My = 0. If z; is a simple zero, then z; is a zero with multi-
plicity & — 1 of left hand side of (4.10) and a zero with multiplicity 1 of right
hand side of (4.10), which is a contradiction. If z; is a multiple zero with mul-
tiplicity g1 > 2, then z7 is a zero with multiplicity (k — 1)¢1 of left hand side
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of (4.10) and a zero with multiplicity (k — 1)q1 — (k — 2) of right hand side of
(4.10), which is a contradiction. Thus, f has at most finitely many zeros.
Sub-case IB.1.2: If R;(z) # 0, then (4.8) becomes

(4.11) P (fR) = Qu.
By Lemma 3.1, we have
m(r, fR1) = O(logr).
From our assumption, since fR; has finitely many poles. Then
T(r, fR1) = m(r, fR1) + N(r, fR1) = O(logr).

Therefore, fR; is a rational function, which contradicts that f is transcenden-
tal.
Sub-case IB.2: If Dy # 0, then by Lemma 3.2 we get

(4.12) Dye® = Dy.
Differentiating (4.12), we have

(4.13) (D} + Docd})e®™ = D).
Eliminating e* from (4.12) and (4.13), we get
(4.14) D!, Dy — D1 D)) = o/, D1 Dy.
Substituting,

Dy = My h—My b+ - 4(=1)* My  h*=Y and D} = M} h4 (M1 —Mj,)h/ —
(May — MR 4 A (=12 (My—y 1 — ML) A=) (= 1)~ My R R in (4.14),
we have

(4.15) Ath+ Ao’ + -+ + A1 B =0,
where

Ay = My, Do — My1(Dj + o'y Dy),

Ay = (Myy — My,) Do + M1 (Djy + oy Dy),

Ap = (=12 (My 11 — M) Do — (=1)*"" M1 (Dfy + a Do),
Apyr = (=1)" "My Dy,
are rational functions.
Substituting the expressions of A, h”, ... h*) into (4.15), we get
(4.16) Afm + Ao (f™) + -+ A(f) Y + A (FM™W = Qo

where Qz = —[A1 Pa(z, f) + A2Py(z, f) 4+ APy ™V (2 ) + A PP (2, 1)
is a differential polynomial in f with rational functions as its coefficients and
degree of Qo < d.
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Using (4.5) we define

(1.17) w=2

t=1,2,...,k; k> 3. Now applying (4.5) and (4.17) in (4.16), we have
(4.18) "Ry = Qo,

where

(4.19) Ry = fFAL + Agthy + -+ + Apgr .

Noting the fact d <n —k — 1 and combining (4.18) with Lemma 3.1 we obtain
m(r, Re) = O(logr).
By the assumption, f has finitely many poles, then
T(r,Ry) = m(r, Re) + N(r, Ry) = O(log ),

i.e., Ry is a rational function.
Next we discuss two sub cases as follows:
Sub-case IB.2.1: If Ry(z) =0, then by (4.19) we have

(4.20) FFAL = —(Agpy + - + Aggathy).

Now proceeding in the same way as done in Sub-case IB.1.1 and replacing k —1
by k we can show that f has finitely many zeros. So we omit the details.
Sub-case IB.2.2: If Ry(z) # 0, then (4.18) becomes

(4.21) f"EH(fRe) = Qo

Next similar to subcase Sub-case IB.1.2 we can get a contradiction.

So from the above discussion we conclude that f is a transcendental mero-
morphic function with finite zeros and poles. Now by Lemma 3.4, we can say
that

(4.22) f(2) = q(2)e",

where ¢(z) is a non-vanishing rational function, and P(z) is a non-constant
polynomial. Substituting (4.22) into (2.1) yields

d k
(423) @D+ 3B (2)e PO = 3 pia)es @),
§=0 i=1
where f3;(z) are rational functions.
Now we can rearrange {1,2,...,d} to {o1,02,...,04} such that ﬁj(z)ejp(z)

= B, (2)e%P @) for j =1,...,dand {1,2,...,k} to {70, 71,...,7k_1} such that
pi(2)e® @) =p_ (2)e®i-1) for i =1,2,... k. Then (4.23) can be written as

d k
(424) (DD 1Y B ()T =3 pr ()i ),
j=0 i=1
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Since n > d, deg(ar, —a;,) >1 (1 <7 #71; <k)and q, p; (i=1,2,...,k)
are all non-zero rational functions, then using Lemma 3.3 on (4.24) we have
nP = Qry + A0701P = Qry + A1702P = Qr, + A27 s 70k—1P = Qr_, + Ak—la
where A; (1 =0,1,...,k—1) are constants such that

n

—A —-A —A —Ap_
q =e€ Omean =e€ 1p7—1,,8<72 =e€ 2p7'27"'560'k71 =e 7 1p7—,€,1-

Also, By(z) = 0 and B,,(2) =0 for all 0 # 01,02,...,0,_1 With 0 < o; < d.
Therefore,

N A — . . .
OéTO.Ole.-~'.Oé_,_k71—7’L.0’1.--~.0'k,1,

k—1
nP' =d, and Py(z f)= an(z)eari(z).
i=1

Case II: Let a # 0. In this case we consider
(4.25) h(z) = [ +af" "2 [+ Pa(z, f)

and similar as Case I, we can prove that f is a finite order transcendental
meromorphic function.
Sub-case ITA: Suppose that k = 1. Then (2.1) becomes

(4.26) "+ af" 2 4+ Py = pre™.
Differentiating (4.26) we have,

/
@20 nf 7 aln =P o = (B ) e
1
Eliminating e* from (4.26) and (4.27), we have
(4.28) J"°Rs = Qs,
where

(429)  Ra=nf’f +a(n— (/) +aff" - (aa + i) P +aff)

and Q3 = (a’l—&—g—i) P, — P} with degree d. Sinced <n—k—3=mn—4, so
from (4.29) and Lemma 3.1, we have
m(r, R3) = O(logr).
By the hypothesis, f has finitely many poles, thus
T(r,R3) = m(r,R3) + N(r, R3) = O(logr),

i.e., R3 is a rational function.
Sub-case ITA.1: Let R3 = 0. Then from (4.29) we have

(4.30) <0/1 + Zl) PP=nff +aln=2)(f)? +aff’ —a <O/1 + pll) f1
1

b1
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Now we will prove that f has only finitely many zeros. On the contrary,
suppose that f has infinitely many zeros. It is clear from (4.30) that all zeros
of f are multiple zeros. Assume z3 is a zero of f but not the zeros or poles
of the coefficients of (4.30), with multiplicity ps > 2. Then comparing the
multiplicity of f on both side of (4.30) we have, z3 is a zero of the left hand
side of (4.30) with multiplicity 3p; and a zero of the right hand side of (4.30)
with multiplicity 2(ps — 1), which is a contradiction. So, f has at most finitely
many zeros.

Hence f is a transcendental meromorphic function with finite zeros and
poles. Now by Lemma 3.4, we can say that f(z) = ¢(2)e”’®), where ¢(2)
is a non-vanishing rational function and P(z) is a non-constant polynomial.
Substituting the form of f into (4.26) yields

d
(4.31) qn(z)enP(z) +aqn—2(q/+qpl)e(n—1)P(z) +Z 7]j<Z)ejP(z) = (Z)eal(z),
j=0
where 7;(z) are rational functions. As ¢ # 0, so by applying Lemma 3.3 on
(4.31) we get ¢ +qP' =0, i.e., q(z) = D1 /eP®) for a constant D, which is a
contradiction that ¢ is a rational function.
Sub-case ITA.2: Let R3 # 0. Then from (4.28) we have,

(4.32) f"H(fRs) = Qs.
Since d < n — 4, combining (4.32) with Lemma 3.1, we have
m(r, fR3) = O(logr).
On the other hand, as we assume f has finitely many poles, thus
T(r, fRs) =m(r, fR3) + N(r, fR3) = O(logr),

i.e., fRs is a rational function and we have Rg3 is rational, but f is tran-
scendental, a contradiction. Therefore, in this case, there does not exist any
transcendental meromorphic solution.

Sub-case IIB: In this case k = 2. Then (2.1) becomes

(4.33) [ 4 af 2f + Py = pi1e™ + pae?.

Differentiating (4.33) and eliminating e*? we get
pl2 / n pl2 ’ n—2 p/ n—1 p/
(4.34) = 4ay | f"tal =4ay | M —nfrf
P2 P2
/
_a(n _ 2)fn—3(f/)2 _ afn—Qfl/ _ Pcll 4 <Ip;2 + a/2> Pd — plAqu’
2

where A = (Z—é
deg(av; —aj) > 1 (1 <i#j<k).
Now differentiating (4.34) and eliminating e®*, we have

(4.35) S"* Ry = Qu,

’
— B4 ol —al ) #0, otherwise it contradicts our assumption
p1 ’
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where
(4.36) Ry = hi(2)(f* +af?f") + hao(2)(nf°f +af? " +a(n - 2) f(f')?)
+af?fO 4 3a(n = 2)ff f 4+ n(n = 1) ()
+nff" +a(n —2)(n - 3)(f')°
and
Qq = —Pj — ha(2)Pj — h1(2) Pa,
such that

ol | -ttt ————%X |
A p /
P (pf—f—aQ)

pll A ’ p/2 /
ha(z) = (pl + 1 +a1+p2 +a2>.
Then it follows from Lemma 3.1 that R, is a rational function. Now we consider
the following two cases:

Sub-case 1IB.1: Let R4 = 0.
Then (4.36) can be written as

(4.37)  hi(2)(f* + af?f")
= — lha()(nf* ' +af* ' +a(n =2 f(f)*)+af* [P +3a(n - 2) £
+n(n = 1)f2(f)? +nf2f" +aln = 2)(n = 3)(f)°].

If f has infinitely many zeros, it follows from (4.37) that zeros of f are
of multiplicity ps > 2. Let z4 be a zero of f but not zeros or poles of the
coefficients. Then comparing the multiplicity of f on both side of (4.37) we
have, z4 is a zero of the left hand side of (4.37) with multiplicity 3ps — 1 and
a zero of the right hand side of (4.37) with multiplicity 3(ps — 1), which is a
contradiction. So, f has at most finitely many zeros.

So, f is a transcendental meromorphic function with finite zeros and poles.
Now by Lemma 3.4, we can say that f(z) = q(2)e’®), where ¢(2) is a non-

vanishing rational function and P(z) is a non-constant polynomial. Substitut-
ing the form of f into (4.33) yields

, ’
Do ’
/ / A (7 + 042)
hi(z) = <p2 +a') h / >

d
(438) ()" +aq" (g + qP)em VPO 137 ¢ ()P
j=0

= pl(Z)eal(Z) +p2(2)eaz(Z)7
where (;(z) are rational functions. Applying Lemma 3.3 on (4.38), we get
nP=a;+ By, (n—1)P=ay+ By,
where B; (i = 1,2) are constants such that

qn _ 6781]717 aqn72(q/+qpl) _ 6762172
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or
HPZOé2+B~1, (n—l)P=a1 —|—[;’2,
where B; (i = 1,2) are constants such that
¢" = e Bip1, ag" (g +qP') = e B,
Also, ¢j(z) =0forall j =0,1,...,d, ie., Py(z, f) =0. Clearly,

/ /
-1
a—,l = —— and a—,l =0 .
ay n-—1 o n
Sub-case IIB.2: Let R4 # 0. Then from (4.35) we have,
(4.39) F"7°(fRa) = Qu.

Since d < n — 5, combining (4.39) with Lemma 3.1, we have
m(r, fR4) = O(logr).
By the hypothesis, f has finitely many poles, thus
T(r, fRa) = m(r, fR4) + N(r, fRs) = O(log ),

i.e., fR4 is a rational function and we have R, is rational, which is a contra-
diction that f is transcendental.

Sub-case IIC: In this case, we suppose that k& > 3. We consider iz(z)
in (4.25) instead of h(z) in (4.1) and proceed similarly as Sub-case IB with
necessary changes.

Sub-case IIC.1: Now similar as Sub-case IB.1 we proceed upto (4.4). In
this case, (4.4) becomes

(4.40) My (f" +af"2f) + -+ (D" M (" + afm 2 )Y = @,
and similar as (4.5), we can check that
(4.41) (/720
= [ b = 2) R
t t (t=i+1) n—3 ¢(i) - n—j3—2¢ e\ Aj1

+iz=; (Z>f TS (n=2)f"f +jz=:22;mf IR

(F7P2 - (OO (= 2) (= 8) - (0 — i = D)
In this case, using (4.5) and (4.41), we define
(/" +af* 20

(4.42) & =

fnfkfl
fort =1,2,...,k —1; k > 3. Then using (4.42), (4.8) changes to
(4.43) S Ry = Qs.

After that proceeding similarly, we can prove that Rs is rational and can con-
sider the following two subcases.
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Sub-case IIC.1.1: If R5(z) = 0, then (4.9) changes to
(4.44)  Mu(ff* +aff ) = — [-Ma& 4+ 4 (1) Mii&e] -

We will show that f has at most finitely many zeros. On the contrary,
suppose that f has infinitely many zeros. So we can consider such a point zj
such that f(z5) = 0 but 25 is neither a zero nor a pole of Mj; (j =1,2,...,k).

Now let, My, # 0. Notice that, £x_1 contain one term, in which, power of f
is 0. Thus we can deduce that f'(z5) = 0, which implies that z5 is a multiple
zero of f with multiplicity say ps > 2. Then z5 will be a zero of the left and
right hand side of (4.44) with multiplicity kps — 1 and k(ps — 1), respectively,
which is a contradiction.

Next, assume My, = 0. If z5 is a simple zero, then z5 is a zero with multi-
plicity & — 1 of left hand side of (4.44) and a zero with multiplicity 1 of right
hand side of (4.44), which is a contradiction. If z5 is a multiple zero with mul-
tiplicity g5 > 2, then z5 will respectively be a zero of multiplicity kg5 — 1 and
k(gs — 1) + 1 of the left and right hand side of (4.44) respectively to yield a
contradiction.

Thus, f has at most finitely many zeros.

Sub-case IIC.1.2: Let R5(z) #Z 0. Then (4.11) changes to f* *¥=2(fRs5) =
Q5 and similarly we get a contradiction.

Sub-case IIC.2: When Dy # 0. Proceed similar as Sub-case IB.2 and in
this case (4.16), (4.17) and (4.18) changes respectively to

(445)  As(f"+af" )+ 4 A (f +af W = Qo
(fn 4 afn—2f/)(t)

(446) wt = fnikiz bl
t=1,2,...,k; k>3 and
(4.47) PR 2Rg = Q.

Here also Rg is rational. Now, we distinguish following two cases:
Sub-case IIC.2.1: Let Rg(z) = 0, here (4.20) changes to

(4.48) (FFP2 4 )AL = —(Agtr + -+ + Apatn).

We have f has only finitely many zeros. If not, suppose that f has infinitely
many zeros. Consider a point zg such that f(zs) = 0 but z¢ is not a zero or a
pole of A; (j =1,2,...,k+1).

Now let, Axy1 # 0. Noticing the fact that i, contains a term independent
of f, we can deduce f’(z6) = 0, which implies that zg is a multiple zero of f
with multiplicity say pg > 2. Clearly zg is a zero of multiplicity (k + 1)pg — 1
and (k + 1)(ps — 1) respectively of the left hand side and right hand side of
(4.48), a contradiction.

Next, assume Axi1 = 0. If zg is a simple zero, then zg is a zero with
multiplicity k of left hand side of (4.48) and a zero with multiplicity 1 of right
hand side of (4.48), which is a contradiction. If zg is a multiple zero with
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multiplicity g > 2, then zg is a zero of left hand side of (4.48) with multiplicity

(k4+1)gs—1 and a zero of right hand side of (4.48) with multiplicity (k+1)gs—k,

again gives a contradiction. It follows that f has at most finitely many zeros.
Sub-case IIC.2.2: If Rg(z) # 0, then (4.21) changes to

7 3(fRe) = Qo

and adopting similar procedure we can get a contradiction.

As usual from the above two cases we conclude that f is a transcendental
meromorphic function with finite zeros and poles. Now by Lemma 3.4, we can
say that

(4.49) f(2) = q(2)e”,

where ¢(z) is a non-vanishing rational function, and P(z) is a non-constant
polynomial. Substituting (4.49) into (2.1) yields

d
(450) () +ag 2 (d +qP)e VPO L3 ()P
7=0

k
= Zpl(z)eal(Z)v
1=1

where ¢;(z) are rational functions.

Now we can rearrange {1,2,...,d} to {o1,09,...,04} such that goj(z)ejp(z)
= Yo, (2)e?iP) for j = 1,...,d and {1,2,... k} to {p,v,k1,kKoy. ., Kk_o}
such that p; (2)e®1(*) = p,(2)e® )| py(2)e*2*) = p,(2)e* () and p;(2)e**) =
pni_Q(z)ea“i%(Z) for i = 3,4,...,k. Then (4.50) can be written as

d
(451) qn(z)enP(z) + aqn—Q(ql + qP/)e(n—l)P(z) + Z Ba'j (Z)eojP(z)
=0

k
= pu(z)eau(z) + (Z)ea,,(z) + mei72 (Z)ea"i—2(z),
=3

Since n > n — 1 > d, deg(a, —ax;) > 1 (1 < K # K < k) and q, pg,_,
(i = 3,4,...,k) are all non-zero rational functions and ¢’ + ¢P’ # 0, using
Lemma 3.3 on (4.51) we have
nP=oa,+Cy (n—1)P=0a,+Cy,, 01 P =, +Ci,
oo P = Qpy + Cg, e, Op_oP = Qe o+ Ckfg,
where C; (i =1,2,...,k — 2) are constants such that
q" = e “pu, ag" (¢ +qP') = e “py, By =€ Cpy,,
—Cr—2

— »—C2 —
/60'2 =€ pn27~'~7/80k,2 =€ pfikfz'

Also, Bo(z) =0 and By, (2) =0 for all o; # 01,02,...,0,_2 With 0 < 0; < d.
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Therefore,

Y N N —n:n—1:g:--:
PR T tQ, ,=n:n—1:0;: P Ok—2,

k—2
nP' =a,, (n—1)P' =, and Py(z, f) = Zpﬁi(z)eo‘“i (2),
i=1

This completes the proof of the theorem. (I
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