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Abstract. In this paper, we investigate the uniqueness problem of entire functions shar-

ing two polynomials with their k-th derivatives. We look into the conjecture given by Lü, Li

and Yang [Bull. Korean Math. Soc., 51(2014), 1281–1289] for the case F = fnP (f), where

f is a transcendental entire function and P (z) = amzm+am−1z
m−1+ . . . +a1z+a0( 6≡ 0),

m is a nonnegative integer, am, am−1, . . . , a1, a0 are complex constants and obtain a re-

sult which improves and generalizes many previous results. We also provide some examples

to show that the conditions taken in our result are best possible.

1. Introduction, Definitions and Results

In this paper, by meromorphic (entire) function we shall always mean meromor-
phic (entire) function in the complex plane. We assume that the reader is familiar
with the standard notations of Nevanlinna’s theory of meromorphic functions as
explained in [7, 9, 17]. For a nonconstant meromorphic function f , we denote by
T (r, f) the Nevanlinna Characteristic function of f and by S(r, f) any quantity
satisfying S(r, f) = o{T (r, f)} for all r outside a possible exceptional set of finite
logarithmic measure. The meromorphic function a is called a small function of f , if
T (r, a) = S(r, f), where r →∞ outside a possible exceptional set of finite measure.

Let k be a positive integer or infinity and a ∈ C∪{∞}. We denote by Nk)(r, a; f)
the counting function of all those a-points of f whose multiplicities are not greater
than k and by N(k+1(r, a; f) the counting function of all those a-points of f whose
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multiplicities are greater than k.
Let f and g be two nonconstant meromorphic functions and Q1, Q2 be two

polynomials or complex numbers. If f − Q1 and g − Q2 have the same zeros with
the same multiplicities, then we say that f − Q1 and g − Q2 share the value 0
CM. Especially, if Q1 = Q2 = a, where a ∈ C ∪ {∞}, then we say that f and g
share the value a CM, when f − a and g − a have the same zeros with the same
multiplicities. The uniqueness problem of entire and meromorphic functions sharing
values, small functions, polynomials with their derivatives is an interesting topic of
value distribution theory. Many mathematicians (see [5, 8, 16, 19, 20, 21]) worked
on this topic and they gave many conjectures and results. In 1976, Rubel and Yang
[14] first proved a result which is as follows.

Theorem A. If a nonconstant entire function f and its derivative f ′ share two
distinct finite values CM, then f = f ′.

Theorem A suggests the following question.

Question 1. What can be said if a nonconstant entire function f shares one finite
value CM with its derivative f ′?

In 1996, Brück [2] presented the following conjecture relating to Question 1.

Conjecture 1. Let f be a nonconstant entire function. Suppose that ρ1(f),
the first iterated order of f , is not a positive integer or infinite where ρ1(f) =

lim sup
r→∞

log log T (r, f)

log r
and if f and f ′ share one finite value a CM, then f ′−a

f−a = c,

for some nonzero constant c.

In 1996, Brück [2] proved that the conjecture is true if a = 0 or N(r, 0; f ′) =
S(r, f). In 1998, Gundersen and Yang [6] proved that the conjecture is true if f is
of finite order and fails, in general, for meromorphic functions. In 2004, Chen and
Shon [3] proved that the conjecture is true for entire function of order ρ1(f) < 1

2 .
In 2005, Al-Khaladi [1] proved that the conjecture is true for meromorphic function
f when N(r, 0; f ′) = S(r, f).

Now it is natural to ask the following question.

Question 2. Whether Brück Conjecture holds if the function f is replaced by its
n-th power fn?

In 2008, Yang and Zhang [18] answered the above question by proving the
following result.

Theorem B. Let f be a nonconstant entire function, n ≥ 7 be an integer and
let F = fn. If F and F ′ share 1 CM, then F = F ′ and f assumes the form
f(z) = ce

1
n z, where c is a nonzero constant.

In 2010, Zhang and Yang [22] further improved Theorem B by considering k-th
derivative of fn as follows.
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Theorem C. Let f be a nonconstant entire function and n, k be two positive
integers such that n ≥ k + 1. If fn and (fn)(k) share the value 1 CM, then fn =

(fn)(k) and f assumes the form f(z) = ce
λ
n z, where c, λ are nonzero constants and

λk = 1.

In 2011, Lü and Yi [11] considered polynomial sharing instead of value sharing
and proved the following result.

Theorem D. Let f be a transcendental entire function, n, k be two positive integers
and Q 6≡ 0 be a polynomial. If fn − Q and (fn)(k) − Q share the value 0 CM and

n ≥ k + 1, then fn = (fn)(k) and f assumes the form f(z) = ce
λ
n z, where c, λ are

nonzero constants and λk = 1.

Regarding Theorem D one may ask the following question.

Question 3. What can be said if fn −Q1 and (fn)(k) −Q2 share the value 0 CM,
where Q1, Q2 are polynomials with Q1Q2 6≡ 0?

In 2014, Lü, Li and Yang [10] answered the above question for k = 1 and
obtained the following result.

Theorem E. Let f be a transcendental entire function and n ≥ 2 be an integer.
If fn − Q1 and (fn)′ − Q2 share the value 0 CM, then Q2

Q1
is a polynomial and

f ′ = Q2

nQ1
f . Furthermore, if Q1 = Q2, then f(z) = ce

1
n z, where Q1, Q2 are

polynomials with Q1Q2 6≡ 0, and c is a nonzero constant.

In the same paper the authors posed the following conjecture.

Conjecture 2. Let f be a transcendental entire function and n, k be two positive
integers such that n ≥ k + 1. If fn − Q1 and (fn)(k) − Q2 share the value 0 CM,

then (fn)(k) = Q2

Q1
fn. Furthermore, if Q1 = Q2, then f(z) = ce

λ
n z, where Q1, Q2

are polynomials with Q1Q2 6≡ 0, and c, λ are nonzero constants such that λk = 1.

Recently Majumder [12] showed that the above conjecture is true for any posi-
tive integer k. The following two examples given in [12] respectively shows that the
condition n ≥ k + 1 and f is transcendental in Conjecture 2 are essential.

Example 1. Let f(z) = e2z + z. Then f − Q1 and f ′ − Q2 share 0 CM, but
f ′ 6≡ Q2

Q1
f , where Q1(z) = z + 1 and Q2(z) = 3.

Example 2. Let f(z) = z. Then f2 − Q1 and (f2)′ − Q2 share 0 CM, but
(f2)′ 6≡ Q2

Q1
f2, where Q1(z) = 2z2 + z and Q2(z) = 2z2 + 4z.

In [10] the authors posed the following two questions.

Question 4. What can be said if in Conjecture 2 the condition “fn” be replaced
by “P (f)” where P (z) =

∑n
i=0 aiz

i?

Question 5. What can be said if in Conjecture 2 the condition “fn” be replaced
by “f(z + c1)f(z + c2) . . . f(z + cn)” where cj (j = 1, 2, . . . , n) are constants?
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Our aim to write this paper is to investigate the Conjecture due to Lü, Li and
Yang by considering the function F = fnP (f) where f is a transcendental entire
function and P (z) =

∑m
i=0 aiz

i, a0, a1, . . . , am(6= 0) are complex constants.
Though we are able to find out an affirmative solution of Question 4 as far as we
know Question 5 remains open. The following is the main result of the paper.

Theorem 1. Let f be transcendental entire function and n, m, k be positive integers
such that n ≥ m+k+1. If fnP (f)−Q1 and (fnP (f))(k)−Q2 share 0 CM, then P (z)
reduces to a nonzero monomial, namely P (z) = aiz

i for some i ∈ {0, 1, . . . , m}
and (fn+i)(k) = Q2

Q1
fn+i. Furthermore, if Q1 = Q2, then f assumes the form

f(z) = ce
λ
n+i z , where Q1, Q2 are polynomials with Q1Q2 6≡ 0 and c, λ are nonzero

constants such that λk = 1.

The condition n ≥ m+k+1 in Theorem 1 is essential as shown by the following
example.

Example 3. Let f(z) = ez − 1 and P (f) = f2 + 3f + 3. Then fP (f) − Q1 and
(fP (f))′ − Q2 share 0 CM, but (fP (f))′ 6≡ Q2

Q1
fP (f), where Q1(z) = z + 1 and

Q2(z) = 3z + 6.

The following example shows that the hypothesis of transcendental of f in
Theorem 1 is necessary.

Example 4. Let f(z) = z − 1 and P (f) = f + 1. Then f3P (f) − Q1 and
(f3P (f))′ − Q2 share 0 CM, but (f3P (f))′ 6≡ Q2

Q1
f3P (f), where Q1(z) = z4 + 3z2

and Q2(z) = −14z3 − 9z2 − 1.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1.([15]) Let f be a nonconstant meromorphic function and an(z)( 6≡ 0),
an−1(z), . . . , a1(z), a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f)
for i = 0, 1, 2, . . . , n. Then

T (r, anf
n + an−1f

n−1 + . . . + a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.([4]) Suppose that f is a transcendental meromorphic function and that

fnP∗(f) = Q∗(f),

where P∗(f) and Q∗(f) are differential polynomials in f with functions of small
proximity related to f as the coefficients and the degree of Q∗(f) is at most n. Then

m(r,∞;P∗(f)) = S(r, f).
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Lemma 3.([7]) Let f be a nonconstant meromorphic function and let a1(z), a2(z)
be two meromorphic functions such that T (r, ai) = S(r, f), i = 1, 2. Then

T (r, f) ≤ N(r,∞; f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

Lemma 4.([13]) Let f be a nonconstant meromorphic function and n, k, m be
positive integers such that n ≥ k + 1. If fnP (f) = {fnP (f)}(k), then P (z) reduces
to a nonzero monomial, namely P (z) = aiz

i for some i ∈ {0, 1, . . . , m}; and

fn+i ≡ (fn+i)(k), where f assumes the form f(z) = ce
λ
n+i z, where c is a nonzero

constant and λk = 1.

3. Proof of the Theorem

Proof of the Theorem 1. Let F∗ = F
Q1

, G∗ = G
Q2

, where F = fnP (f) and G =

(fnP (f))(k). Clearly F∗ and G∗ share 1 CM except for the zeros of Qi(z), where
i = 1, 2 and so N(r, 1;F∗) = N(r, 1;G∗) + S(r, f). Let

W =
F ′∗(F∗ −G∗)
F∗(F∗ − 1)

.(3.1)

We now consider the following two cases.

Case 1. Let W 6≡ 0. It is obvious that m(r,∞;W ) = S(r, f).
Let z0 be zero of f with multiplicity p0(≥ 1) which is a zero of P (f) with

multiplicity q0(≥ 1) such that Qi(z0) 6= 0, where i = 1, 2. Then from (3.1), we
obtain

W (z) = O
(
(z − z0)np0+q0−k−1

)
.(3.2)

Since n ≥ m+k+1 and f is transcendental entire, we see that N(r,∞;W ) = S(r, f).
Consequently T (r,W ) = S(r, f).

Now from (3.1) we see that

1

F∗
=

1

W

F ′∗
F∗(F∗ − 1)

(
1− G∗

F∗

)
.

Therefore, it follows from above that m(r, 0;F∗) = S(r, f), and hence m(r, 0; f) =
S(r, f). Also

N(r, 0; f) ≤ N(r, 0;W ) ≤ T (r,
1

W
) ≤ T (r,W ) +O(1) = S(r, f).

Hence T (r, f) = S(r, f), a contradiction.
Let z1 be zero of f with multiplicity p1(≥ 1) which is not a zero of P (f) and

Qi(z1) 6= 0 for i = 1, 2. Then as before we obtain

W (z) = O
(
(z − z1)np1−k−1

)
,(3.3)
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T (r,W ) = S(r, f) and m(r, 0; f) = S(r, f).(3.4)

We now discuss the following two subcases.
Subcase 1. Let n > m+ k + 1. Then from (3.3), we obtain

N(r, 0; f) ≤ N(r, 0;W ) ≤ T (r,
1

W
) ≤ T (r,W ) +O(1) = S(r, f).(3.5)

Hence from (3.4) and (3.5), we get T (r, f) = S(r, f), a contradiction.
Subcase 2. Let n = m+ k + 1. Then from (3.3) we see that

N(2(r, 0; f) ≤ N(r, 0;W ) ≤ T (r,
1

W
) ≤ T (r,W ) +O(1) = S(r, f).

Then (3.4) gives

T (r, f) = N1)(r, 0; f) + S(r, f).(3.6)

Let

F = fnP (f)

= amf
n+m + am−1f

n+m−1 + . . . + a1f
n+1 + a0f

n

= Fm + Fm−1 + . . . + F1 + F0, say.(3.7)

Since F − Q1 and F (k) − Q2 share 0 CM, there exists an entire function α, such
that

F (k) −Q2 = eα(F −Q1).(3.8)

First we assume that eα is not constant. Differentiating (3.8), we get

F (k+1) −Q′2 = α′eα(F −Q1) + eα(F ′ −Q′1).(3.9)

From (3.8) and (3.9) we obtain

F (k+1)F − α′F (k)F − F (k)F ′

= Q1F
(k+1) − (α′Q1 +Q′1)F (k) −Q2F

′ + (Q′2 − α′Q2)F

+α′Q1Q2 +Q2Q
′
1 −Q1Q

′
2.(3.10)

From (3.8) we see that

T (r, eα) ≤ (k + 2)T (r, F ) +O(log r) + S(r, F ) = (n+m)(k + 2)T (r, f) + S(r, f).

Since T (r, α′) = S(r, eα), it follows that T (r, α′) = S(r, f). Now from (3.7), we
deduce for i ∈ {0, 1, . . . , m} that

F ′i = ai(n+ i)fn+i−1f ′

= fm{ai(n+ i)fn+i−m−1f ′}
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F ′′i = ai(n+ i)(n+ i− 1)fn+i−2(f ′)2 + ai(n+ i)fn+i−1f ′′

= fm{ai(n+ i)(n+ i− 1)fn+i−m−2(f ′)2 + ai(n+ i)fn+i−m−1f ′′}

F ′′′i = ai(n+ i)(n+ i− 1)(n+ i− 2)fn+i−3(f ′)3

+3ai(n+ i)(n+ i− 1)fn+i−2f ′f ′′ + ai(n+ i)fn+i−1f ′′′

= fm{ai(n+ i)(n+ i− 1)(n+ i− 2)fn+i−m−3(f ′)3

+3ai(n+ i)(n+ i− 1)fn+i−m−2f ′f ′′ + ai(n+ i)fn+i−m−1f ′′′}

and so on.

Thus in general we have

F
(k)
i = fm

∑
λi

aλif
lλ
i

0 (f ′)l
λi

1 . . . (f (k))l
λi

k ,

where lλ
i

0 , lλ
i

1 , . . . , lλ
i

k are nonnegative integers satisfying

k∑
j=0

lλ
i

j = n + i − m,

n+ i−m− k ≤ lλi0 ≤ n+ i−m− 1 and aλi are constants for i ∈ {0, 1, . . . , m}.
Also we have

F
(k+1)
i = fm

∑
λi

bλif
pλ
i

0 (f ′)p
λi

1 . . . (f (k+1))p
λi

k+1 ,

where pλ
i

0 , pλ
i

1 , . . . , pλ
i

k+1 are nonnegative integers satisfying

k+1∑
j=0

pλ
i

j = n + i −m,

n+ i−m−k−1 ≤ pλi0 ≤ n+ i−m−1 and bλi are constants for i ∈ {0, 1, . . . , m}.
Thus we have from (3.7)

F (k) = fm
{∑
λm

aλmf
lλ
m

0 (f ′)l
λm

1 . . . (f (k))l
λm

k

+
∑
λm−1

aλm−1f l
λm−1

0 (f ′)l
λm−1

1 . . . (f (k))l
λm−1

k + . . .

+
∑
λ1

aλ1f l
λ1

0 (f ′)l
λ1

1 . . . (f (k))l
λ1

k +
∑
λ0

aλ0f l
λ0

0 (f ′)l
λ0

1 . . . (f (k))l
λ0

k

}
(3.11)
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and

F (k+1) = fm
{∑
λm

bλmf
pλ
m

0 (f ′)p
λm

1 . . . (f (k+1))p
λm

k+1

+
∑
λm−1

bλm−1fp
λm−1

0 (f ′)p
λm−1

1 . . . (f (k+1))p
λm−1

k+1

+ . . . +
∑
λ1

bλ1fp
λ1

0 (f ′)p
λ1

1 . . . (f (k+1))p
λ1

k+1

+
∑
λ0

bλ0fp
λ0

0 (f ′)p
λ0

1 . . . (f (k+1))p
λ0

k+1

}
.(3.12)

Using (3.7), (3.11) and (3.12) in (3.10), we obtain

fn+mP∗(f) = Q∗(f),(3.13)

where Q∗(f) is a differential polynomial in f of degree n+m and

P∗(f) =

{∑
λm

bλmf
pλ
m

0 (f ′)p
λm

1 . . . (f (k+1))p
λm

k+1

+
∑
λm−1

bλm−1fp
λm−1

0 (f ′)p
λm−1

1 . . . (f (k+1))p
λm−1

k+1

+ . . . +
∑
λ1

bλ1fp
λ1

0 (f ′)p
λ1

1 . . . (f (k+1))p
λ1

k+1

+
∑
λ0

bλ0fp
λ0

0 (f ′)p
λ0

1 . . . (f (k+1))p
λ0

k+1

}
P (f)

−α′
{∑
λm

aλmf
lλ
m

0 (f ′)l
λm

1 . . . (f (k))l
λm

k

+
∑
λm−1

aλm−1f l
λm−1

0 (f ′)l
λm−1

1 . . . (f (k))l
λm−1

k

+ . . . +
∑
λ1

aλ1f l
λ1

0 (f ′)l
λ1

1 . . . (f (k))l
λ1

k

+
∑
λ0

aλ0f l
λ0

0 (f ′)l
λ0

1 . . . (f (k))l
λ0

k

}
P (f)

−f ′
{∑
λm

aλmf
lλ
m

0 −1(f ′)l
λm

1 . . . (f (k))l
λm

k

+
∑
λm−1

aλm−1f l
λm−1

0 −1(f ′)l
λm−1

1 . . . (f (k))l
λm−1

k

+ . . . +
∑
λ1

aλ1f l
λ1

0 −1(f ′)l
λ1

1 . . . (f (k))l
λ1

k
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+
∑
λ0

aλ0f l
λ0

0 −1(f ′)l
λ0

1 . . . (f (k))l
λ0

k

}
P1(f)

= A(f ′)k+1 +R∗(f)(3.14)

is a differential polynomial in f of degree n + m, where A is a suitable constant,
P1(f) = am(n+m)fm+am−1(n+m−1)fm−1 + . . . +a1(n+1)f +a0n and R∗(f)
is a differential polynomial in f . Actually every monomial of R∗(f) has the form

Ri(α
′)fq

λi

0 (f ′)q
λi

1 . . . (f (k+1))q
λi

k+1 ,

where qλ
i

0 , qλ
i

1 , . . . , qλ
i

k+1 are nonnegative integers satisfying

k+1∑
j=0

qλ
i

j = n+ 2i−m,

n+2i−m−k ≤ qλi0 ≤ n+2i−m−1 and Ri(α
′) are polynomials in α′ with constant

coefficients for i ∈ {0, 1, . . . , m}.
First we suppose that P∗(f) 6≡ 0. Then by Lemma 2, we get m(r,∞;P∗) =

S(r, f) and so T (r, P∗) = S(r, f). Consequently, T (r, P ′∗) = S(r, f).
Note that from (3.14)

P ′∗(f) = A(k + 1)(f ′)kf ′′ +Bα′(f ′)k+1 + S∗(f)(3.15)

is a differential polynomial in f , where B is a suitable constant and S∗(f) is a
differential polynomial in f . Actually every monomial of S∗(f) has the form

Si(α
′)fr

λi

0 (f ′)r
λi

1 . . . (f (k+1))r
λi

k+1 ,

where rλ
i

0 , rλ
i

1 , . . . , rλ
i

k+1 are nonnegative integers satisfying

k+1∑
j=0

rλ
i

j = n + 2i −m,

n+2i−m−k ≤ rλi0 ≤ n+2i−m−1 and Si(α
′) are polynomials in α′ with constant

coefficients for i ∈ {0, 1, . . . , m}.
Let z2 be simple zero of f . Then from (3.14) and (3.15), we obtain

P∗(f(z2)) = A(f ′(z2))k+1,

and

P ′∗(f(z2)) = A(k + 1)(f ′(z2))kf ′′(z2) +Bα′(f ′(z2))k+1.

This shows that z2 is a zero of P∗f
′′−(c1P

′
∗−c2α′P∗)f ′, where c1 and c2 are suitable

constants. Let

Φ =
P∗f

′′ − (c1P
′
∗ − c2α′P∗)f ′

f
.(3.16)

Clearly Φ 6≡ 0 and T (r,Φ) = S(r, f).
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From (3.16) we have

f ′′ = α1f + β1f
′,(3.17)

where

α1 =
Φ

P∗
, β1 = c1

P ′∗
P∗
− c2α′(3.18)

and

T (r, α1) = S(r, f), T (r, β1) = S(r, f).

(3.14) and (3.18) together gives

P ′∗ =

(
β1
c1

+
c2
c1
α′
)
P∗

= A

(
β1
c1

+
c2
c1
α′
)

(f ′)k+1 +

(
β1
c1

+
c2
c1
α′
)
R∗(f).(3.19)

Using (3.15) and (3.17), we get

P ′∗ = A(k + 1)α1f(f ′)k + {A(k + 1)β1 +Bα′}(f ′)k+1 + S∗(f).(3.20)

By (3.19) and (3.20), we have(
A

c1
β1 −A(k + 1)β1 +A

c2
c1
α′ −Bα′

)
(f ′)k+1 −A(k + 1)α1f(f ′)k

+

(
β1
c1

+
c2
c1
α′
)
R∗(f)− S∗(f) ≡ 0.(3.21)

Since α1 6≡ 0, from (3.21) we get

N1)(r, 0; f) = S(r, f).(3.22)

Therefore from (3.6) and (3.22) we have

T (r, f) = S(r, f),

a contradiction.
Next we suppose that P∗(f) ≡ 0. Then Q∗(f) ≡ 0 by (3.13), where

Q∗(f) = Q1F
(k+1) − (α′Q1 +Q′1)F (k) −Q2F

′ + (Q′2 − α′Q2)F

+α′Q1Q2 +Q2Q
′
1 −Q1Q

′
2.

So from (3.10) it follows that

F (k+1)F − α′F (k)F − F (k)F ′ ≡ 0,



Uniqueness of Entire Functions Sharing Polynomials 529

i.e.,

F (k+1)

F (k)
≡ α′ + F ′

F
.(3.23)

Integrating we obtain F (k) = c3Fe
α, where c3 is a nonzero constant. Substituting

the values of F and F (k) into (3.8) we obtain

(c3 − 1)fnP (f) =
Q2 −Q1e

α

eα
.

Clearly c3 6= 1 and all zeros of Q2 −Q1e
α have the multiplicities at least n. Since

n = m+ k + 1, by Lemma 3 we get

T (r, eα) ≤ N(r, 0; eα) +N(r,∞; eα) +N

(
r,
Q2

Q1
; eα
)

+ S(r, eα)

≤ 1

n
N

(
r,
Q2

Q1
; eα
)

+ S(r, eα)

≤ 1

n
T (r, eα) + S(r, eα),

which contradicts to the assumption that eα is a nonconstant entire function.
Next we assume that eα is a constant, say c4. Then from (3.8), we have

F (k) − c4F ≡ Q2 − c4Q1.(3.24)

Since n = m+ k + 1, it follows that

N(r, 0; f) = S(r, f)

and hence by (3.4) we have

T (r, f) = S(r, f),

a contradiction.

Case 2. Let W ≡ 0. Then from (3.1) we get F∗ = G∗,

i.e., (fnP (f))(k) =
Q2

Q1
fnP (f).(3.25)

If Q1 and Q2 are same polynomials then using Lemma 4 we can get the conclusion
of the theorem. Next we assume that Q1 and Q2 are distinct. We show that P (z)
reduces to a nonzero monomial of the form P (z) = aiz

i for some i ∈ {0, 1, . . . , m}.
If not, we may assume that P (z) = amz

m + am−1z
m−1 + . . . + a1z + a0, where

at least two of am, am−1, . . . , a1, a0, namely ap, aq, p 6= q are nonzero. As f is
entire and n ≥ m + k + 1, from (3.25) we see that 0 is a Picard exceptional value
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of f . So we have f(z) = eα, where α is a nonconstant entire function. It is easy to
see that for i ∈ {0, 1, . . . , m},

ai{(fn+i)(k) −
Q2

Q1
fn+i} =

[
ti(α

′, α′′, . . . , α(k))− ai
Q2

Q1

]
e(n+i)α

= si(α
′, α′′, . . . , α(k))e(n+i)α,(3.26)

where si(α
′, α′′, . . . , α(k)) are differential polynomials in α′, α′′, . . . , α(k) with

rational coefficients. Using (3.25) and (3.26), we obtain

sm(α′, α′′, . . . , α(k))emα + sm−1(α′, α′′, . . . , α(k))e(m−1)α + . . .

+s1(α′, α′′, . . . , α(k))eα + s0(α′, α′′, . . . , α(k)) ≡ 0.(3.27)

Since T (r, si) = S(r, f) (i = 0, 1, . . . , m), by Borel theorem on the com-
bination of entire functions (see Theorem 1.52 of [17]), (3.27) gives si = 0 for
i ∈ {0, 1, . . . , m}. As ap, aq 6= 0, from (3.26), we have

(fn+p)(k) =
Q2

Q1
fn+p and (fn+q)(k) =

Q2

Q1
fn+q.

Thus we get two different forms of f simultaneously, a contradiction. Hence P (z) =
aiz

i for some i ∈ {0, 1, . . . ,m}. Therefore, (fn+i)(k) = Q2

Q1
fn+i for some

i ∈ {0, 1, . . . , m}. This completes the proof of Theorem 1. 2
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