• 제목/요약/키워드: transcendental

검색결과 251건 처리시간 0.023초

비기하학적 현대건축의 초월론적 추상 - 들뢰즈의 사유를 중심으로 - (Transcendental Abstraction in Non-geometric Contemporary Architecture - focused on Deleuze's Thinking -)

  • 조용수
    • 대한건축학회논문집:계획계
    • /
    • 제35권5호
    • /
    • pp.107-116
    • /
    • 2019
  • Non-geometric shapes in contemporary architecture was explained from the transcendental schema of Deleuze with his abstraction theory. In this explanation, the intensity, the movement and change and the sublime were suggested as the expressional elements of the transcendental abstraction related with the artistic sensation of architecture. First, the intensity as a power of sensation which acts to the body before the recognition of brain is mainly expressed with the movement of curved lines of architectural space. Second, the movement of change is expressed as the de-centralized and de-formalized nomadic curve as the line in architectural 'smooth space' which has unrestrained orientations. Third, the sublime is expressed in the hugeness, enormousness or sometimes uncanny in void space, which could be contradictively mixed with senses of displeasure and pleasure. The sublime feelings in architecture can be emerging by rationally overcoming the unpleasant senses of contradictive spaces in architecture or urban fabric. This study has explained those expressional elements with the architectural works of Steven Holl, Frank Gehry and Zaha Hadid.

ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES I

  • Kim, Dae-Yeoul;Koo, Ja-Kyung
    • 대한수학회지
    • /
    • 제44권1호
    • /
    • pp.55-107
    • /
    • 2007
  • Let k be an imaginary quadratic field, h the complex upper half plane, and let $\tau{\in}h{\cap}k,\;q=e^{{\pi}i\tau}$. In this article, we obtain algebraic numbers from the 130 identities of Rogers-Ramanujan continued fractions investigated in [28] and [29] by using Berndt's idea ([3]). Using this, we get special transcendental numbers. For example, $\frac{q^{1/8}}{1}+\frac{-q}{1+q}+\frac{-q^2}{1+q^2}+\cdots$ ([1]) is transcendental.

ALGEBRAIC NUMBERS, TRANSCENDENTAL NUMBERS AND ELLIPTIC CURVES DERIVED FROM INFINITE PRODUCTS

  • Kim, Dae-Yeoul;Koo, Ja-Kyung
    • 대한수학회지
    • /
    • 제40권6호
    • /
    • pp.977-998
    • /
    • 2003
  • Let k be an imaginary quadratic field, η the complex upper half plane, and let $\tau$ $\in$ η $textsc{k}$, p = $e^{{\pi}i{\tau}}$. In this article, using the infinite product formulas for g2 and g3, we prove that values of certain infinite products are transcendental whenever $\tau$ are imaginary quadratic. And we derive analogous results of Berndt-Chan-Zhang ([4]). Also we find the values of (equation omitted) when we know j($\tau$). And we construct an elliptic curve E : $y^2$ = $x^3$ + 3 $x^2$ + {3-(j/256)}x + 1 with j = j($\tau$) $\neq$ 0 and P = (equation omitted) $\in$ E.

ON THE TRANSCENDENTAL ENTIRE SOLUTIONS OF A CLASS OF DIFFERENTIAL EQUATIONS

  • Lu, Weiran;Li, Qiuying;Yang, Chungchun
    • 대한수학회보
    • /
    • 제51권5호
    • /
    • pp.1281-1289
    • /
    • 2014
  • In this paper, we consider the differential equation $$F^{\prime}-Q_1=Re^{\alpha}(F-Q_2)$$, where $Q_1$ and $Q_2$ are polynomials with $Q_1Q_2{\neq}0$, R is a rational function and ${\alpha}$ is an entire function. We consider solutions of the form $F=f^n$, where f is an entire function and $n{\geq}2$ is an integer, and we prove that if f is a transcendental entire function, then $\frac{Q_1}{Q_2}$ is a polynomial and $f^{\prime}=\frac{Q_1}{nQ_2}f$. This theorem improves some known results and answers an open question raised in [16].

A RESULT ON A CONJECTURE OF W. LÜ, Q. LI AND C. YANG

  • Majumder, Sujoy
    • 대한수학회보
    • /
    • 제53권2호
    • /
    • pp.411-421
    • /
    • 2016
  • In this paper, we investigate the problem of transcendental entire functions that share two values with one of their derivative. Let f be a transcendental entire function, n and k be two positive integers. If $f^n-Q_1$ and $(f^n)^{(k)}-Q_2$ share 0 CM, and $n{\geq}k+1$, then $(f^n)^{(k)}{\equiv}{\frac{Q_2}{Q_1}}f^n$. Furthermore, if $Q_1=Q_2$, then $f=ce^{\frac{\lambda}{n}z}$, where $Q_1$, $Q_2$ are polynomials with $Q_1Q_2{\not\equiv}0$, and c, ${\lambda}$ are non-zero constants such that ${\lambda}^k=1$. This result shows that the Conjecture given by W. $L{\ddot{u}}$, Q. Li and C. Yang [On the transcendental entire solutions of a class of differential equations, Bull. Korean Math. Soc. 51 (2014), no. 5, 1281-1289.] is true. Also we exhibit some examples to show that the conditions of our result are the best possible.

UNIQUENESS RELATED TO HIGHER ORDER DIFFERENCE OPERATORS OF ENTIRE FUNCTIONS

  • Xinmei Liu;Junfan Chen
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제30권1호
    • /
    • pp.43-65
    • /
    • 2023
  • In this paper, by using the difference analogue of Nevanlinna's theory, the authors study the shared-value problem concerning two higher order difference operators of a transcendental entire function with finite order. The following conclusion is proved: Let f(z) be a finite order transcendental entire function such that λ(f - a(z)) < ρ(f), where a(z)(∈ S(f)) is an entire function and satisfies ρ(a(z)) < 1, and let 𝜂(∈ ℂ) be a constant such that ∆𝜂n+1 f(z) ≢ 0. If ∆𝜂n+1 f(z) and ∆𝜂n f(z) share ∆𝜂n a(z) CM, where ∆𝜂n a(z) ∈ S ∆𝜂n+1 f(z), then f(z) has a specific expression f(z) = a(z) + BeAz, where A and B are two non-zero constants and a(z) reduces to a constant.

ON THE NORMALITY OF TRANSLATED FAMILIES OF TRANSCENDENTAL ENTIRE FUNCTIONS

  • KIM JEONG HEON;KWON KI HO;PARK SUK BONG
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.573-583
    • /
    • 2005
  • For a certain set G in the complex plane, we construct a transcendental entire function f whose translated family ${f(2^{n}z)}$ is normal only at z in G and establish the relation between the normal family and the Julia direction of f(z).

ON THE DYNAMICAL PROPERTIES OF SOME FUNCTIONS

  • Yoo, Seung-Jae
    • 충청수학회지
    • /
    • 제15권2호
    • /
    • pp.47-56
    • /
    • 2003
  • This note is concerned with some properties of fixed points and periodic points. First, we have constructed a generalized continuous function to give a proof for the fact that, as the reverse of the Sharkovsky theorem[16], for a given positive integer n, there exists a continuous function with a period-n point but no period-m points wherem is a predecessor of n in the Sharkovsky ordering. Also we show that the composition of two transcendental meromorphic functions, one of which has at least three poles, has infinitely many fixed points.

  • PDF

On the Value Distribution of ff(k)

  • Wang, Jian-Ping
    • Kyungpook Mathematical Journal
    • /
    • 제46권2호
    • /
    • pp.169-180
    • /
    • 2006
  • This paper proves the following results: Let $f$ be a transcendental entire function, and let $k({\geq})2$ be a positive integer. If $T(r,\;f){\neq}N_{1)}(r,1/f)+S(r,\;f)$, then $ff^{(k)}$ assumes every finite nonzero value infinitely often. Also the case when f is a transcendental meromorphic function has been considered and some results are obtained.

  • PDF