DOI QR코드

DOI QR Code

ALGEBRAIC NUMBERS, TRANSCENDENTAL NUMBERS AND ELLIPTIC CURVES DERIVED FROM INFINITE PRODUCTS

  • Kim, Dae-Yeoul (Korea Advanced Institute of Science and Technology Department of Mathematics, Department of Mathematics Chonbuk National University) ;
  • Koo, Ja-Kyung (Korea Advanced Institute of Science and Technology Department of Mathematics)
  • Published : 2003.11.01

Abstract

Let k be an imaginary quadratic field, η the complex upper half plane, and let $\tau$ $\in$ η $textsc{k}$, p = $e^{{\pi}i{\tau}}$. In this article, using the infinite product formulas for g2 and g3, we prove that values of certain infinite products are transcendental whenever $\tau$ are imaginary quadratic. And we derive analogous results of Berndt-Chan-Zhang ([4]). Also we find the values of (equation omitted) when we know j($\tau$). And we construct an elliptic curve E : $y^2$ = $x^3$ + 3 $x^2$ + {3-(j/256)}x + 1 with j = j($\tau$) $\neq$ 0 and P = (equation omitted) $\in$ E.

Keywords

References

  1. Invent. Math. v.124 Une preuve de la conjecture de Mahler-Manin K.Barre-Sirieix;G.Diaz;F.Gramain;G.Philibert https://doi.org/10.1007/s002220050044
  2. Higher Transcendental functions v.2 H.Bateman
  3. Ramanujan's Notebooks Part Ⅲ B.C.Berndt
  4. Proc. Edinburgh Math. Soc. v.40 Ramanujan's remarkable product of theta-functions B.C.Berndt;H.H.Chan;L.C.Zhang https://doi.org/10.1017/S0013091500024032
  5. Proceedings of the International Congress of Mathematics v.1;2 Automorphic forms on $O_{s+2,2}(R)^+$ and generalized Kac-Moody algebras R.E.Borcherds
  6. Invent. Math. v.120 no.1 Automorphic forms on $O_{s+2,2}(R)^+$ and infinite products R.E.Borcherds https://doi.org/10.1007/BF01241126
  7. Trans. Amer. Math. Soc. v.343 Some cubic modular identities of Ramanujan J.M.Borwein;P.B.Borwein;F.G.Garvan https://doi.org/10.2307/2154520
  8. Grundlehren der mathematischen wissenschaften v.281 Elliptic Functions K.Chandrasekharan
  9. Proc. Japan Acad. Ser. A Math. Sci. v.72 Transcendence of Jacobi's theta series D.Duverney;Ke.Nishioka;Ku.Nishioka;I.Shiokawa https://doi.org/10.3792/pjaa.72.202
  10. Proc. Japan Acad. Ser. A Math. Sci. v.73 Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers D.Duverney;Ke.Nishioka;Ku.Nishioka;I.Shiokawa https://doi.org/10.3792/pjaa.73.140
  11. Math. Ann. v.258 On the zeros of the Weierstrass $\frak{P}$-function M.Eichler;D.Zagier https://doi.org/10.1007/BF01453974
  12. Introduction to number theory L.K.Hua
  13. Acta Arith. v.100 Algebraic integer as values of elliptic functions D.Kim;J.K.Koo https://doi.org/10.4064/aa100-2-1
  14. Commun. Korean Math. Soc. v.16 no.4 Integrability as values of cusp forms in imaginary quadratic D.Kim;J.K.Koo
  15. Bull. Korean Math. Soc. v.37 no.4 Transcendental numbers as values of elliptic functions D.Kim;J.K.Koo
  16. Elliptic Functions S.Lang
  17. Elliptic Curves H.Mckean;V.Moll
  18. Math. Sb. v.187 Modular functions and transcendence problems Y.Nesterenko
  19. Trans. Camb. Phil. Soc. v.22 On certain arithmetical functions S.Ramanujan
  20. Transcendental numbers C.L.Siegel
  21. Advanced Topics in the Arithmetic of Elliptic Curves J.H.Silverman
  22. Lecture Notes in Math. Nombres transcendents M.Waldschmidt
  23. A course of modern analysis E.T.Whittaker;G.N.Watson

Cited by

  1. DIVISOR FUNCTIONS AND WEIERSTRASS FUNCTIONS ARISING FROM q-SERIES vol.49, pp.4, 2012, https://doi.org/10.4134/BKMS.2012.49.4.693