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UNIQUENESS RELATED TO HIGHER ORDER DIFFERENCE
OPERATORS OF ENTIRE FUNCTIONS

Xinmei Liu a and Junfan Chen b, ∗

Abstract. In this paper, by using the difference analogue of Nevanlinna’s the-
ory, the authors study the shared-value problem concerning two higher order dif-
ference operators of a transcendental entire function with finite order. The follow-
ing conclusion is proved: Let f(z) be a finite order transcendental entire function
such that λ(f − a(z)) < ρ(f), where a(z)(∈ S(f)) is an entire function and satis-
fies ρ(a(z)) < 1, and let η(∈ C) be a constant such that ∆n+1

η f(z) 6≡ 0. If ∆n+1
η f(z)

and ∆n
η f(z) share ∆n

η a(z) CM, where ∆n
η a(z) ∈ S

(
∆n+1

η f(z)
)
, then f(z) has a

specific expression f(z) = a(z) + BeAz, where A and B are two non-zero constants
and a(z) reduces to a constant.

1. Introduction

Let C denote the complex plane and suppose that f(z) is a meromorphic function
in C. Here and in the sequel it is assumed that the reader is familiar with the funda-
mental results and the standard notations of Nevanlinna’s value distribution theory
of meromorphic functions (see [18]) such as m(r, f), N(r, f), N(r, f) and T (r, f). In
addition, we denote by S(r, f) any function satisfying S(r, f) = o(T (r, f)) as r →
∞, possibly outside a set of r of finite logarithmic measure. If a meromorphic func-
tion a(z)(6≡ ∞) satisfies T (r, a(z)) = S(r, f), then a(z) is called a small function
of f(z), and we denote by S(f) the set of functions which are small compared
to f(z). Throughout this paper, we define the order ρ(f) of growth of f(z) as

ρ(f) = lim sup
r→∞

log+ T (r, f)
log r

.

If ρ(f) < ∞, then the function f is called meromorphic function of finite order.
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Let f(z) and g(z) be two nonconstant meromorphic functions, and let a ∈ C. We
say that f(z) and g(z) share the value a CM provided that f(z)−a and g(z)−a have
the same zeros counting multiplicities, that f(z) and g(z) share the value∞ CM pro-
vided that f(z) and g(z) have the same poles counting multiplicities. Using the same
method, we can define that f(z) and g(z) share the function a(z) CM, where a(z) ∈
S(f) ∩ S(g). Moreover, we need the following two definitions.

Definition 1.1 ([18]). Let f(z) be a transcendental meromorphic function whose
non-zero zeros are z1, z2, ···, zn, ···, appearing often according to their multiplicities.
Let |zn| = rn, and r1 ≤ r2 ≤ · · · ≤ rn ≤ · · ·. We call the infimum of the positive

numbers τ that converge the series
∞∑

n=1

1
|rn|τ as the exponent of the convergence of

the zeros of f(z), denoted by

λ = inf
τ>0

(
+∞∑

n=1

1
|zn|τ ) < +∞.

If the transcendental meromorphic function f(z) has no zeros or finitely many
zeros, then the exponent of the convergence of the zeros of f(z) is required to be

0. If f(z) has infinitely many zeros but the series
∞∑

n=1

1
|zn|τ does not converge for

any τ > 0, then the exponent of the convergence of the zeros of f(z) is ∞.

Definition 1.2. Let f(z) be a meromorphic function. Then its difference operator
is defined as

∆ηf(z) = f(z + η)− f(z), ∆k
ηf(z) = ∆η(∆k−1

η f(z)), k ∈ N, k ≥ 2,

where η is a non-zero constant, ∆ηf(z) is usually regarded as a difference analogue
of f ′.

According to the definition of difference operator, the expression of n-order dif-
ference operator can be deduced by induction as

∆n
ηf(z) =

n∑

j=0

(−1)n−jCj
nf(z + jη).

The uniqueness theory of meromorphic functions is an important part of complex
analysis. Recently many scholars have begun to study the uniqueness of meromor-
phic functions and their difference operators sharing values or small functions, and
have obtained many meaningful results. For example, one can refer to the literatures
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(see [2, 3, 4, 5, 9, 13, 16]). In this paper, we will study the shared-value problem
concerning two higher order difference operators of a transcendental entire function
with finite order. Now we recall the following results.

In 1977, Rubel and Yang [17] studied the uniqueness of an entire function and
its derivative sharing two values, and proved the following theorem.

Theorem 1.1 ([17]). Let f(z) be a nonconstant entire function. If f(z) and f ′(z)
share a,b CM, where a, b are two distinct finite complex values, then f(z) ≡ f ′(z).

In 1986, Jank, Mues and Volkman [14] generalized Theorem 1.1 and obtained the
following theorem.

Theorem 1.2 ([14]). Let f(z) be a nonconstant meromorphic function, let a be a
nonzero complex number. If f(z), f ′(z) and f ′′(z) share a CM, then f(z) ≡ f ′(z).

In 2013, Chen and Yi [6] considered the problem that f(z) and ∆ηf(z) share one
value a CM and proved the following theorem.

Theorem 1.3 ([6]). Let f(z) be a finite order transcendental entire function which
has a finite Borel exceptional value a, and let η(∈ C) be a constant such that f(z +
η) 6≡ f(z). If ∆ηf(z) = f(z + η)− f(z) and f(z) share the value a CM, then

a = 0,
f(z + η)− f(z)

f(z)
= A,

where A is a nonzero constant.

The following theorem, studied and proved by Farissi, Latreuch and Asiri [10] in
2016, can be regarded as the difference analogue of Theorem 1.2.

Theorem 1.4 ([10]). Let f(z) be a nonconstant entire function of finite order, let a(z)( 6≡
0) ∈ S(f) be a periodic entire function of period η. If f(z), ∆ηf(z) and
∆2

ηf(z) share a(z) CM, then ∆ηf(z) ≡ f(z).

In 2021, Chen and Zhang [7] studied the CM sharing value problem of ∆2
ηf(z) and

∆ηf(z). They generalized sharing one value in Theorem C to the case of sharing a
small function a(z) of order less than 1, and proved the following theorem.

Theorem 1.5 ([7]). Let f(z) be a finite order transcendental entire function such
that λ(f−a(z)) < ρ(f), where a(z)(∈ S(f)) is an entire function and satisfies ρ(a(z)) <

1, and let η(∈ C) be a constant such that ∆2
ηf(z) 6≡ 0. If ∆2

ηf(z) and
∆ηf(z) share ∆ηa(z)CM, where ∆ηa(z) ∈ S

(
∆2

ηf(z)
)
, then f(z) = a(z)+BeAz, where

A and B are two non-zero constants and a(z) reduces to a constant.
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In this paper, we consider extending the condition that ∆2
ηf(z) and ∆ηf(z) share

∆ηa(z) CM in Theorem 1.5 to the condition that ∆n+1
η f(z) and ∆n

ηf(z) share ∆n
ηa(z)

CM, where the following theorem is established.

Theorem 1.6. Let f(z) be a finite order transcendental entire function such that
λ(f −a(z)) < ρ(f), where a(z)(∈ S(f)) is an entire function and satisfies ρ(a(z)) <

1, and let η(∈ C) be a constant such that ∆n+1
η f(z) 6≡ 0. If ∆n+1

η f(z) and ∆n
ηf(z) share

∆n
ηa(z) CM, where ∆n

ηa(z) ∈ S
(
∆n+1

η f(z)
)
, then

f(z) = a(z) + BeAz,

where A and B are two non-zero constants and a(z) reduces to a constant.

Example 1.1. Let f(z) = e4z, and let η = 1, where a(z) = 0, A = 4, B = 1. Then
we can get

∆ηf(z) = f(z + η)− f(z) = e4(z+η) − e4z = e4z(e4η − 1) = e4z(e4 − 1),

∆2
ηf(z) = f(z + 2η)− 2f(z + η) + f(z) = e4(z+2η) − 2e4(z+η) + e4z

= e4z(e8η − 2e4η + 1) = e4z(e4η − 1)2 = e4z(e4 − 1)2.

By mathematical induction, we deduce

∆n
ηf(z) = ∆η(∆n−1

η f(z)) = e4z(e4η − 1)n = e4z(e4 − 1)n,

∆n+1
η f(z) = ∆η(∆n

ηf(z)) = e4z(e4η − 1)n+1 = e4z(e4 − 1)n+1.

Example 1.2. Let f(z) = e4z + 1, and let η = 1, where a(z) = 1, A = 4, B = 1.
Then we can get

∆ηf(z) = f(z + η)− f(z) = e4(z+η) + 1− e4z − 1 = e4z(e4η − 1) = e4z(e4 − 1),

∆2
ηf(z) = f(z + 2η)− 2f(z + η) + f(z) = e4(z+2η) + 1− 2e4(z+η) − 2 + e4z + 1

= e4z(e8η − 2e4η + 1) = e4z(e4η − 1)2 = e4z(e4 − 1)2.

By mathematical induction, we deduce

∆n
ηf(z) = ∆η(∆n−1

η f(z)) = e4z(e4η − 1)n = e4z(e4 − 1)n,

∆n+1
η f(z) = ∆η(∆n

ηf(z)) = e4z(e4η − 1)n+1 = e4z(e4 − 1)n+1.

Remark 1.1. Example 1.1 and Example 1.2 show the existence of such transcen-
dental entire function f(z) of finite order satisfying the condition in Theorem 1.6.
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Example 1.3. Let f(z) = e4z + zn+1, and let η = 1, where a(z) = zn+1, A =
4, B = 1, n ∈ N. Then we can get

∆ηf(z) = f(z + η)− f(z) = e4(z+η) + (z + η)n+1 − e4z − zn+1

= e4z(e4η − 1) + C1
n+1z

n + · · ·+ Cn
n+1z + 1,

∆2
ηf(z) = f(z + 2η)− 2f(z + η) + f(z)

= e4(z+2η) + (z + 2η)n+1 − 2e4(z+η) − 2(z + η)n+1 + e4z + zn+1

= e4z(e8 − 2e4 + 1) + (z + 2)n+1 − 2(z + 1)n+1 + zn+1

= e4z(e4 − 1)2 + 2C2
n+1z

n−1 + · · ·+ (2n − 2)Cn
n+1z + 2n+1 − 2,

∆3
ηf(z) = ∆η

(
∆2

ηf(z)
)

= ∆2
ηf(z + η)−∆2

ηf(z)

= e4(z+η)(e4 − 1)2 + 2C2
n+1(z + η)n−1 + · · ·+ (2n − 2)Cn

n+1(z + η) + 2n+1

− 2− e4z(e4 − 1)2 − 2C2
n+1z

n−1 − · · · − (2n − 2)Cn
n+1z − 2n+1 + 2

= e4z(e4 − 1)3 + 2C2
n+1

[
(z + 1)n−1 − zn−1

]

+ (23 − 2)C3
n+1

[
(z + 1)n−2 − zn−2

]
+ · · ·+ (2n − 2)Cn

n+1

= e4z(e4 − 1)3 + 2C2
n+1C

1
n−1z

n−2

+ · · ·+ [
2C2

n+1 + (23 − 2)C3
n+1 + · · ·+ (2n − 2)Cn

n+1

]
.

By mathematical induction, we deduce

∆n
ηf(z) = ∆η(∆n−1

η f(z)) = e4z(e4 − 1)n + c(z),

∆n+1
η f(z) = ∆η(∆n

ηf(z)) = e4z(e4 − 1)n+1 + C,

where c(z) is a polynomial of deg c(z) = 1, and C is a nonzero constant.

Remark 1.2. Example 1.3 shows that if a(z) is a polynomial, then ∆n
ηf(z) and

∆n+1
η f(z) do not share 0 CM, that is, the conclusion that a(z) reduces to a constant

in Theorem 1.6 is accurate.

Remark 1.3. The idea used in this work comes from [7].

2. Some Lemmas

The following properties of the order and the exponent of the convergence of the
zeros of canonical products play a key role in the proof of this paper.

Lemma 2.1 ([18]). Let f(z) be a nonconstant periodic meromorphic function. Then f(z) has
the order ρ(f) ≥ 1.
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Lemma 2.2 ([18]). Let f(z) be a meromorphic function of finite order ρ, and

f(z) = ckz
k + ck+1z

k+1 + · · · (ck 6= 0)

in the neighborhood of z = 0. Suppose that a1, a2, · · · are nonzero zeros of f(z) and
b1, b2, · · · are nonzero poles of f(z). Then

f(z) = zkeQ(z) P1(z)
P2(z)

,

where P1(z) is a canonical product of nonzero zeros of f(z), P2(z) is a canonical
product of nonzero poles of f(z), and Q(z) is a polynomial of degree at most ρ.

Lemma 2.3 ([18]). The order ρ of the canonical product P (z) is equal to the
exponent of the convergence of the zeros of P (z).

Based on the definition of the ε-set [12], Bergweiler and Langley [1] came to the
following conclusions.

Lemma 2.4 ([1]). Let g be a transcendental meromorphic function of order less
than 1, and let h > 0. Then there exists an ε-set E such that

g(z + c)− g(z) = cg′(z)(1 + o(1)) as z →∞ in C\E,

uniformly in c for |c| ≤ h.

Lemma 2.5 ([1]). Let g be a transcendental meromorphic function of order< 1, and
let h be a normal number. Then there exists a ε-set E such that for all c satisfy-
ing |c| ≤ h, when z →∞ and z ∈ C\E, we have

g′(z + c)
g(z + c)

→ 0,
g(z + c)

g(z)
→ 1.

Further, the set E can be chosen such that for sufficiently large |z| 6∈ E, the func-
tion g has no zeros or poles in |ζ − z| ≤ h.

Lemma 2.6 ([7]). Let g(z) be a transcendental meromorphic function which satis-
fies ρ(g) < 1, and let η ∈ C\{0}. Then ∆n

ηg(z) and G(z) = ∆ηg(z)
g(z) = g(z+η)−g(z)

g(z) are
both transcendental such that

lim inf
r→∞

T (r,∆n
ηg(z))
r

= 0,

where n ≥ 1 is an integer.
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Lemma 2.7 ([7]). Let Pn(z), · · ·, P0(z) be polynomials such that PnP0 6≡ 0 and
satisfy

Pn(z) + · · ·+ P0(z) 6≡ 0.

Then every finite order transcendental meromorphic solution g(z)(6≡ 0) of the equa-
tion

Pn(z)g(z + nη) + Pn−1(z)g(z + (n− 1)η) + · · ·+ P0(z)g(z) = 0

satisfies ρ(g) ≥ 1, and g(z) assumes every nonzero value a ∈ C infinitely often and
satisfies λ(g − a) = ρ(g), where η ∈ C\{0}.

Lemma 2.8 ([7]). Let G(z), Pn(z), · · ·, P0(z) be polynomials such that GPnP0 6≡
0. Then every finite order transcendental meromorphic solution g(z)(6≡ 0) of the
equation

Pn(z)g(z + nη) + Pn−1(z)g(z + (n− 1)η) + · · ·+ P0(z)g(z) = G

satisfies λ(g) = ρ(g) ≥ 1, where η ∈ C\{0}.

The difference analogue of Clunie’s lemma described below also plays an impor-
tant role in the proof of this paper.

Lemma 2.9 ([15]). Let g be a transcendental meromorphic solution of finite or-
der ρ of a difference equation of the form

U(z, g)P (z, g) = Q(z, g),

where U(z, g), P (z, g), Q(z, g) are difference polynomials in g(z) and its shifts such
that the total degree deg U(z, g) = n, and deg Q(z, g) ≤ n. Moreover, we assume that
U(z, g) contains just one term of maximal total degree in g(z) and its shifts. Then, for
each ε > 0,

m(r, P (z, g)) = O(rρ−1+ε) + S(r, g),

possibly outside of an exceptional set of finite logarithmic measure.

Lemma 2.10 ([8]). Let g be a meromorphic function with a finite order ρ, η be a
nonzero constant. Let ε > 0 be given. Then there exists a subset E ⊂ (1,∞) with
finite logarithmic measure such that for all z satisfying |z| = r 6∈ E ∪ [0, 1],

exp{−rρ−1+ε} ≤
∣∣∣∣
g(z + η)

g(z)

∣∣∣∣ ≤ exp{rρ−1+ε}.
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Lemma 2.11 ([11, 18]). Suppose that n ≥ 2 and let f1(z), ···, fn(z) be meromorphic
functions and g1(z), · · ·, gn(z) be entire functions such that

(1)
n∑

j=1

fj(z) exp{gj(z)} = 0;

(2) when 1 ≤ j < k ≤ n, gj(z)− gk(z) is not constant;
(3) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n ,

T (r, fj) = o{T (r, exp{gh − gk})}, r →∞, r 6∈ E,

where E ⊂ (1,∞) has finite linear measure or logarithmic measure.
Then fj(z) ≡ 0, j = 1, · · ·, n.

3. Proof of Theorem 1.6

Since f(z) is a transcendental entire function of finite order, and a(z)(∈ S(f)) is
an entire function satisfying ρ(a(z)) < 1, by Lemma 2.2, we can write f(z) in the
form

f(z)− a(z) = B(z)eh(z),(3.1)

where B(z)(6≡ 0) is an entire function and h(z) is a polynomial satisfying deg h =
k. And due to λ (f − a(z)) < ρ(f), from Lemma 2.3, we know that λ(B(z)) =
ρ(B(z)). Then we can get that

λ(B) = ρ(B) = λ(f − a(z)) = ρ1 < k = ρ(f) = deg h,(3.2)

implying that k ≥ 1. If k = 0, then a contradiction can be obtained by comparing
the order of growth of both sides of (3.1). According to the hypothesis of Theorem
1.1, ∆n+1

η f(z) and ∆n
ηf(z) share ∆n

ηa(z) CM, we have

∆n+1
η f(z)−∆n

ηa(z)
∆n

ηf(z)−∆n
ηa(z)

= eP (z),(3.3)

where P (z) is a polynomial.
Substituting (3.1) into (3.3) yields

∆n+1
η f(z)−∆n

ηa(z)
∆n

ηf(z)−∆n
ηa(z)

=

n+1∑

j=0

(−1)n+1−jCj
n+1B(z + jη)eh(z+jη) + u(z)

n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη)

= eP (z),(3.4)
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where u(z) = ∆n+1
η a(z)−∆n

ηa(z) and

ρ(u(z)) ≤ max
{
ρ

(
∆n

ηa(z)
)
, ρ

(
∆n+1

η a(z)
)} ≤ ρ(a(z)) < 1.

Now suppose that deg P (z) = s. Set

h(z) = akz
k + ak−1z

k−1 + · · ·+ a0,

P (z) = bsz
s + bs−1z

s−1 + · · ·+ b0,
(3.5)

where k = ρ(f) ≥ 1, ak( 6= 0), ak−1, · · ·, a0, bs(6= 0), bs−1, · · ·, b0 are constants and

0 ≤ deg P = s ≤ deg h = k.

Case 1: If deg P (z) = s = 0, then eP (z) is always a nonzero constant. We assume
eP (z) = D. Then (3.4) can be rewritten as

∆n+1
η f(z)−∆n

ηa(z)
∆n

ηf(z)−∆n
ηa(z)

=

n+1∑

j=0

(−1)n+1−jCj
n+1B(z + jη)eh(z+jη) + u(z)

n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη)

= D,(3.6)

namely,

n+1∑

j=0

(−1)n+1−jCj
n+1B(z + jη)eh(z+jη)−h(z)

−D
n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη)−h(z) = −u(z)e−h(z).

(3.7)

Combining ρ(B) < k with deg(h(z + jη)−h(z)) = k− 1 < k (j = 0, 1, · · ·, n +1), it
can be obtained that the order of growth of the left-hand side of (3.7) is less than k.
However, since ρ(u(z)) < 1 and deg h(z) = k, the order of growth of the right-hand
side of (3.7) is equal to k. Therefore, by comparing the order of growth of the both
sides of (3.7), we get u(z) ≡ 0, namely,

u(z) = ∆n+1
η a(z)−∆n

ηa(z) ≡ 0.(3.8)

Secondly, we assume that a(z) is a nonconstant entire function. Let

W (z) = a(z + η)− 2a(z).(3.9)
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Then W (z) is also a nonconstant entire function. Combining u(z) ≡ 0 with (3.8),
we get

u(z) = ∆n+1
η a(z)−∆n

ηa(z) = ∆η

(
∆n

ηa(z)
)−∆n

ηa(z)

= ∆n
ηa(z + η)−∆n

ηa(z)−∆n
ηa(z) = ∆n

ηa(z + η)− 2∆n
ηa(z) ≡ 0.

Thus according to the definitions of difference operator and n-order difference oper-
ator expressions, we have

∆n
ηW (z) = ∆n

η (a(z + η)− 2a(z))

=
n∑

j=0

(−1)n−jCj
n[a(z + η + jη)− 2a(z + jη)]

=
n∑

j=0

(−1)n−jCj
na(z + η + jη)− 2

n∑

j=0

(−1)n−jCj
na(z + jη)

= ∆n
ηa(z + η)− 2∆n

ηa(z) ≡ 0.

By

∆n
ηW (z) = ∆η

(
∆n−1

η W (z)
)

= ∆n−1
η W (z + η)−∆n−1

η W (z) ≡ 0,

we get ∆n−1
η W (z+η) ≡ ∆n−1

η W (z). Let H(z) = ∆n−1
η W (z). Then we can get H(z+

η) ≡ H(z), which means that H(z) is a periodic function with period η. From Lemma
2.1 we can obtain ρ(H(z)) ≥ 1. And because of the ρ

(
∆n−1

η W (z)
) ≤ ρ (W (z)) ≤

ρ(a(z)) < 1 , ρ(H(z)) ≤ ρ(W (z)) < 1 is contradictory. Thus, W is a constant.
If W 6= 0, then (3.9) is changed into the following form

a(z + η)
a(z)

− 2 =
W

a(z)
.(3.10)

Thus, according to Lemma 2.5, there exists a ε-set E0 with finite logarithmic measure
such that for all z →∞ satisfying z ∈ C\E0,

a(z + η)
a(z)

→ 1,

and when |z| = r → +∞, z ∈ {ξ ∈ C/|a(ξ)| = M(r, a)} and z 6∈ E0,

W

a(z)
→ 0.

Therefore, a contradiction can be obtained from (3.10).
If W = 0, then (3.9) is changed into the following form

a(z + η)
a(z)

= 2.



UNIQUENESS RELATED TO HIGHER ORDER DIFFERENCE OPERATORS 53

Thus, we can also obtain a contradiction from Lemma 2.5. Therefore, a(z) ≡ a is
constant, and (3.6) is changed into the following form

n+1∑

j=0

(−1)n+1−jCj
n+1B(z + jη)eh(z+jη) = D

n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη),

that is,
n+1∑

j=1

(−1)n+1−jCj
n+1B(z + jη)eh(z+jη)

−D
n∑

j=1

(−1)n−jCj
nB(z + jη)eh(z+jη) = (−1)n(1 + D)B(z)eh(z).

(3.11)

Next we assume that ρ(f) = deg h = k ≥ 2. Then we will derive the contradiction
from the following two cases.

Subcase 1.1: If D = −1, then from (3.11) we get
n+1∑

j=1

(−1)n+1−jCj
n+1B(z + jη)eh(z+jη) +

n∑

j=1

(−1)n−jCj
nB(z + jη)eh(z+jη) = 0,

namely,
n∑

j=1

(−1)n+1−jB(z + jη)eh(z+jη)[Cj
n+1 − Cj

n]

+ B(z + (n + 1)η)eh(z+(n+1)η) = 0.

(3.12)

According to the combination number formula Cj
n =

n!
j!(n− j)!

, we can get Cj
n+1 −

Cj
n = Cj−1

n . By combining (3.12), we get
n+1∑

j=1

(−1)n+1−jCj−1
n B(z + jη)eh(z+jη) = 0,

that is,
n+1∑

j=2

(−1)n+1−jCj−1
n

B(z + jη)
B(z + η)

eh(z+jη)−h(z+η) = (−1)n+1.(3.13)

Subcase 1.1.1: If n = 1, then (3.13) is changed into the following form

eh(z+2η)−h(z+η) =
B(z + η)
B(z + 2η)

.(3.14)

Thus, S1(z) = B(z+η)
B(z+2η) is a nonconstant entire function.
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By Lemma 2.10, (3.2) and (3.14), we see that for ε1 (0 < 3ε1 < deg h−ρ1), there
exists a set E1 ⊂ (1,∞) of finite logarithmic measure such that for all z satisfy-
ing |z| = r 6∈ [0, 1] ∪ E1,

exp{−rρ1−1+ε1} ≤
∣∣∣∣

B(z + η)
B(z + 2η)

∣∣∣∣ ≤ exp{rρ1−1+ε1}.

Then

m

(
r,

B(z + η)
B(z + 2η)

)
=

1
2π

∫ 2π

0
log+

∣∣∣∣
B(z + η)
B(z + 2η)

∣∣∣∣ dθ

≤ 1
2π

∫ 2π

0
log+ erρ1−1+ε1

dθ = rρ1−1+ε1 ,

which yields

T (r, S1(z)) = m(r, S1(z)) = m

(
r,

B(z + η)
B(z + 2η)

)
≤ rρ1−1+ε1 .

According to the definition of the order, we know ρ(S1(z)) ≤ ρ1−1+ε1 < deg h−1. In
this way, a contradiction can be obtained by comparing the order of growth of the
both sides of (3.14).

Subcase 1.1.2: If n ≥ 2, then we have P1(z) = eh(z+2η)−h(z+η). Because of deg h =
k ≥ 2, we know that ρ(P1(z)) = deg h − 1 ≥ 1, that is, P1(z) is a transcendental
entire function. Thus, for j = 2, 3, · · ·, n + 1, we have

eh(z+jη)−h(z+η) = eh(z+jη)−h(z+(j−1)η)eh(z+(j−1)η)−h(z+(j−2)η) · · · eh(z+2η)−h(z+η)

= P1(z + (j − 2)η)P1(z + (j − 3)η) · · · P1(z).

Hence, (3.13) can be rewritten as

L(z, P1(z)) · P1(z) = (−1)n+1,(3.15)

where

L(z, P1(z)) =
B(z + (n + 1)η)

B(z + η)
P1(z + (n− 1)η)P1(z + (n− 2)η) · · · P1(z + η)

− Cn−1
n

B(z + nη)
B(z + η)

P1(z + (n− 2)η)P1(z + (n− 3)η) · · · P1(z + η)

+ · · ·+ (−1)n−1C1
n

B(z + 2η)
B(z + η)

.

(3.16)
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Since n ≥ 2, we can get deg(P1(z)L(z, P1(z))) = n−1 ≥ 1. Therefore, by Lemma
2.9, for j = 2, 3, · · ·, n + 1, if the coefficient of L(z, P1(z)) satisfies

m

(
r,

B(z + jη)
B(z + η)

)
= S(r, P1(z)),

then

m(r, P1(z)) = S(r, P1(z)).

Now let’s prove m
(
r, B(z+jη)

B(z+η)

)
= S(r, P1(z)).

By Lemma 2.10, (3.2) and (3.16), we see that for ε2 (0 < 3ε2 < deg h−ρ1), there
exists a set E2 ⊂ (1,∞) of finite logarithmic measure such that for all z satisfy-
ing |z| = r 6∈ [0, 1] ∪ E2,

exp{−rρ1−1+ε2} ≤
∣∣∣∣
B(z + jη)
B(z + η)

∣∣∣∣ ≤ exp{rρ1−1+ε2} (j = 2, 3, · · ·, n + 1).(3.17)

Thus, by (3.17), for j = 2, 3, · · ·, n + 1, we have

m

(
r,

B(z + jη)
B(z + η)

)
=

1
2π

∫ 2π

0
log+

∣∣∣∣
B(z + jη)
B(z + η)

∣∣∣∣ dθ

≤ 1
2π

∫ 2π

0
log+ erρ1−1+ε2

dθ = rρ1−1+ε2 .

Since (−1)n+1 6= 0 and P1(z) is a transcendental entire function, L(z, P1(z)) 6≡
0 can be obtained from (3.15). And since P1(z) is of regular growth and ρ(P1(z)) =
k − 1, for any given ε2 (0 < 3ε2 < deg h− ρ1) and all r > r0(> 0), we have

T (r, P1(z)) > rdeg h−1−ε2 .(3.18)

Thus

m
(
r, B(z+jη)

B(z+η)

)

T (r, P1(z))
≤ rρ1−1+ε2

rdeg h−1−ε2
→ 0 (j = 2, 3, · · ·, n + 1),

namely,

m

(
r,

B(z + jη)
B(z + η)

)
= o(T (r, P1)) = S(r, P1) (j = 2, 3, · · ·, n + 1).

Since P1(z) is a transcendental entire function, it is obvious that

T (r, P1(z)) = m(r, P1(z)) = S(r, P1(z)),

which is a contradiction.



56 X.M. Liu & J.F. Chen

Subcase 1.2: If D 6= −1, then from (3.11), we can get

n+1∑

j=1

(−1)n+1−jCj
n+1

B(z + jη)
B(z)

eh(z+jη)−h(z)

−D
n∑

j=1

(−1)n−jCj
n

B(z + jη)
B(z)

eh(z+jη)−h(z) = (−1)n(1 + D).

(3.19)

Set P2(z) = eh(z+η)−h(z). Then ρ(P2(z)) = deg h − 1 ≥ 1, P2(z) is a transcendental
entire function. Thus, for j = 1, 2, · · ·, n + 1, we have

eh(z+jη)−h(z) = eh(z+jη)−h(z+(j−1)η)eh(z+(j−1)η)−h(z+(j−2)η) · · · eh(z+η)−h(z)

= P2(z + (j − 1)η)P2(z + (j − 2)η) · · · P2(z).

Hence (3.19) is changed into the following form

L(z, P2(z)) · P2(z) = (−1)n(1 + D),(3.20)

where

L(z, P2(z)) =
(

B(z + (n + 1)η)
B(z)

P2(z + nη)P2(z + (n− 1)η) · · · P2(z + η)

− Cn
n+1

B(z + nη)
B(z)

P2(z + (n− 1)η)P2(z + (n− 2)η) · · · P2(z + η)

+ · · ·+ (−1)nC1
n+1

B(z + η)
B(z)

)
−D

(
B(z + nη)

B(z)
P2(z + (n− 1)η)

P2(z + (n− 2)η) · · · P2(z + η)−Cn−1
n

B(z + (n− 1)η)
B(z)

P2(z + (n−2)η)

P2(z + (n− 3)η) · · · P2(z + η) + · · ·+ (−1)n−1C1
n

B(z + η)
B(z)

)
.

Thus, according to (3.20), we can derive a contradiction by means similar to the
Subcase 1.1.2.

Therefore, combining the discussion of Subcase 1.1 with Subcase 1.2, we can
get ρ(f) = deg h(z) = k = 1. Let h(z) = Az + A0, where A(6= 0), A0 are con-
stants. Combining (3.1) with (3.2), we can get

f(z) = a(z) + B(z)eAz+A0 = a(z) + B1(z)eAz,(3.21)

where B1 = B(z)eA0(6≡ 0) is an entire function such that

ρ(B1(z)) = λ(B1(z)) = λ(f(z)− a(z)) < ρ(f) = 1.
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Finally, we need to prove that B1(z) is constant. Substituting (3.21) into (3.6),
by u(z) ≡ 0 we can get

n+1∑

j=0

(−1)n+1−jCj
n+1B1(z + jη)eA(z+jη) = D

n∑

j=0

(−1)n−jCj
nB1(z + jη)eA(z+jη),

namely,
n+1∑

j=0

(−1)n+1−jCj
n+1B1(z + jη)eAjη −D

n∑

j=0

(−1)n−jCj
nB1(z + jη)eAjη = 0.(3.22)

Obviously, the sum of all coefficients of (3.22) is 0. If not, then from Lemma 2.7,
ρ(B1(z)) ≥ 1, which is contradictory. Thus we get

n+1∑

j=0

(−1)n+1−jCj
n+1e

Ajη −D
n∑

j=0

(−1)n−jCj
neAjη = 0,(3.23)

namely,

(eAη − 1)n+1 −D(eAη − 1)n = 0.(3.24)

So from (3.24) we can derive either eAη = 1 or eAη = 1 + D.
If eAη = 1, then (3.22) can be written as

n+1∑

j=0

(−1)n+1−jCj
n+1B1(z + jη)−D

n∑

j=0

(−1)n−jCj
nB1(z + jη) = 0,

that is,

∆n+1
η B1(z)−D∆n

ηB1(z) = 0.

According to the definition of difference operator, we get

∆n+1
η B1(z)−D∆n

ηB1(z) = ∆η

(
∆n

ηB1(z)
)−D∆n

ηB1(z)

= ∆n
ηB1(z + η)−∆n

ηB1(z)−D∆n
ηB1(z)

= ∆n
ηB1(z + η)− (1 + D)∆n

ηB1(z) = 0.

(3.25)

Combining (3.25) with Lemma 2.7, we know ρ
(
∆n

ηB1(z)
) ≥ 1. This contradicts

ρ
(
∆n

ηB1(z)
) ≤ ρ(B1(z)) < 1.

Thus, we have eAη = 1 + D.
Note that (3.23) can be rewritten as

n+1∑

j=1

(−1)n+1−jCj
n+1e

Ajη −D
n∑

j=1

(−1)n−jCj
neAjη = (−1)n(1 + D).(3.26)
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Then combining (3.22) with (3.26), we can get
n+1∑

j=1

(−1)n+1−jCj
n+1e

Ajη[B1(z + jη)−B1(z)]

−D

n∑

j=1

(−1)n−jCj
neAjη[B1(z + jη)−B1(z)] = 0.

(3.27)

Thus, according to Lemma 2.4, there exists n + 1 ε-set E∗
k , such that for k =

1, 2, · · ·, n + 1, when z →∞ and z ∈ C\E∗
k ,

B1(z + kη)−B1(z) = kηB′
1(z)(1 + o(1)).

So (3.27) is changed into the following form
n+1∑

j=1

(−1)n+1−jCj
n+1e

Ajη
[
jηB′

1(z)(1 + o(1))
]

−D
n∑

j=1

(−1)n−jCj
neAjη

[
jηB′

1(z)(1 + o(1))
]

= 0,

namely,




n+1∑

j=1

(−1)n+1−jjCj
n+1e

Ajη −D
n∑

j=1

(−1)n−jjCj
neAjη


 (ηB′

1(z)(1 + o(1))) = 0.

(3.28)

Let

K =
n+1∑

j=1

(−1)n+1−jjCj
n+1e

Ajη −D
n∑

j=1

(−1)n−jjCj
neAjη.(3.29)

Obviously K 6= 0. If K = 0, then for j = 1, 2, · · ·, n + 1, we have
{

jCj
n+1 = j(n+1)!

j!(n+1−j)! = (n+1)n!
(j−1)!(n+1−j)! = (n + 1)Cj−1

n ,

jCj
n = jn!

j!(n−j)! = n(n−1)!
(j−1)!(n−j)! = nCj−1

n−1.

Thus (3.29) can be rewritten as

K = (n + 1)
n+1∑

j=1

(−1)n+1−jCj−1
n eAjη − nD

n∑

j=1

(−1)n−jCj−1
n−1e

Ajη.(3.30)

Let k = j − 1. Then (3.30) can be written as

K = (n + 1)eAη
n∑

k=0

(−1)n−kCk
neAkη − nDeAη

n−1∑

k=0

(−1)n−1−kCk
n−1e

Akη,
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namely,

K = (n + 1)eAη(eAη − 1)n − nDeAη(eAη − 1)n−1 = 0.(3.31)

Substituting eAη = 1 + D into (3.31), we get

K = (n + 1)eAη(eAη − 1)n − nDeAη(eAη − 1)n−1

= (n + 1)eAηDn − nDeAηDn−1 = 0,
(3.32)

where D, eAη are nonzero constants. This means that n + 1 = n, a contradiction.
To sum up, we can get K 6= 0. Since both η and (1 + o(1)) are non-zero

constants, B′
1(z) ≡ 0 can be obtained from (3.28). That is, it can be proved

that B1(z) ≡ B is a constant.
So Theorem 1.6 is proved in Case 1.
Case 2: If deg P (z) = s ≥ 1, then we can discuss it in the following two cases.
Subcase 2.1: If 1 ≤ s = k, then (3.4) can be written as

n+1∑

j=0

(−1)n+1−jCj
n+1B(z + jη)eh(z+jη) + u(z)

=




n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη)


 eP (z).

(3.33)

Subcase 2.1.1: If ak + bk = 0, then (3.33) can be written as



n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη)−h(z) − u(z)e−h(z)−P (z)


 eP (z)

=
n+1∑

j=0

(−1)n+1−jCj
n+1B(z + jη)eh(z+jη)−h(z).

(3.34)

Let

H1(z) =
n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη)−h(z) − u(z)e−h(z)−P (z).(3.35)

Since deg P (z) = s = k = deg h(z) and ak + bk = 0, it follows that deg(h(z +
jη) − h(z)) = deg(−h(z) − P (z)) = k − 1 (j = 1, 2, · · ·, n + 1). Since ρ(B(z)) <

ρ(f) = deg h(z) = k, the order of growth of the both sides of (3.34) can be compared
to H1(z) ≡ 0. If H1(z) ≡ 0, then by (3.34), we can get

n+1∑

j=0

(−1)n+1−jCj
n+1B(z + jη)eh(z+jη)−h(z) ≡ 0,(3.36)
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namely,

n+1∑

j=1

(−1)n+1−jCj
n+1

B(z + jη)
B(z)

eh(z+jη)−h(z) = (−1)n.(3.37)

Similar to the method in Subcase 1.1.2, it can be deduced that ρ(f) = deg h =
1. Let h(z) = a1z + a0 (a1 6= 0). Then by (3.36), we can get

n+1∑

j=0

(−1)n+1−jCj
n+1B(z + jη)ea1jη ≡ 0.(3.38)

Obviously, the sum of the coefficients of (3.38) is 0. If not, then we can assume that
the coefficient sum of (3.38) is not 0. Thus, we know from Lemma 2.7 that ρ(B(z)) ≥
1, which contradicts ρ(B(z)) < ρ(f) = 1. Therefore

n+1∑

j=0

(−1)n+1−jCj
n+1e

a1jη = (ea1η − 1)n+1 = 0,

which implies ea1η = 1. Substituting this into (3.38), we can get

∆n+1
η B(z) =

n+1∑

j=0

(−1)n+1−jCj
n+1B(z + jη) ≡ 0.(3.39)

If B(z) is a transcendental entire function, then it follows from Lemma 2.6 that
∆n+1

η B(z) is also a transcendental entire function, which contradicts ∆n+1
η B(z) ≡ 0.

If B(z) is non-zero polynomial, then by (3.35), H1(z) ≡ 0, which means

u(z) = ∆n+1
η a(z)−∆n

ηa(z)

= ∆n
ηa(z + η)−∆n

ηa(z)−∆n
ηa(z)

= ∆n
ηa(z + η)− 2∆n

ηa(z)

=




n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη)−h(z)


 eh(z)+P (z).

(3.40)

Assume that
n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη)−h(z) ≡ 0.

Then we have

∆n
ηB(z)eh(z) =

n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη) ≡ 0,
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that is,

∆n+1
η B(z)eh(z) = ∆η

(
∆n

ηB(z)eh(z)
)

=
n+1∑

j=0

(−1)n+1−jCj
n+1B(z + jη)eh(z+jη) ≡ 0.

(3.41)

Combining (3.1) with (3.4), we get

∆n+1
η f(z)−∆n

ηa(z) = u(z) = ∆n+1
η a(z)−∆n

ηa(z) ≡ 0,(3.42)

which contradicts the condition ∆n
ηa(z) ∈ S

(
∆n+1

η f(z)
)

in Theorem 1.1.
Assume that

n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη)−h(z) 6≡ 0.

Since b1 + a1 = 0, deg h(z) = 1, eh(z)+P (z) and eh(z+jη)−h(z) (j = 0, 1, · · ·, n) are
non-zero constants, and




n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη)−h(z)


 eh(z)+P (z)

is a nonzero polynomial. Therefore, according to Lemma 2.8, ρ
(
∆n

ηa(z)
) ≥ 1, which

contradicts ρ
(
∆n

ηa(z)
) ≤ ρ(a(z)) < 1. To sum up, H1(z) 6≡ 0 is contradictory.

Subcase 2.1.2: If ak + bk 6= 0, then (3.33) can be written as

G11(z)eP (z) + G12(z)e−h(z) + G13(z)eh0(z) = 0,(3.43)

where h0(z) ≡ 0 and




G11(z) = −
n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη)−h(z),

G12(z) = u(z),

G13(z) =
n+1∑

j=0

(−1)n+1−jCj
n+1B(z + jη)eh(z+jη)−h(z).

Since ρ(B(z)) < ρ(f) = k, deg(h(z + jη)− h(z)) = k − 1 < k (j = 1, 2, · · ·, n + 1),

ρ (G1m(z)) < k, m = 1, 2, 3,

deg(P + h) = deg(P − h0) = deg(−h− h0) = k,
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which means that for m = 1, 2, 3, we have




T (r,G1m) = o
(
T (r, eP+h)

)
,

T (r,G1m) = o
(
T (r, eP )

)
,

T (r,G1m) = o
(
T (r, e−h)

)
.

(3.44)

Applying Lemma 2.11 to (3.43), we can get G1m(z) ≡ 0 (m = 1, 2, 3). If G13(z) ≡
0, then

n+1∑

j=0

(−1)n+1−jCj
n+1B(z + jη)eh(z+jη)−h(z) ≡ 0.

So we can derive
n+1∑

j=1

(−1)n+1−jCj
n+1

B(z + jη)
B(z)

eh(z+jη)−h(z) = (−1)n.

Using the method similar to Subcase 2.1.1, we can also get a contradiction.
Subcase 2.2: If 1 ≤ s < k, then (3.4) can be written as

n+1∑

j=0

(−1)n+1−jCj
n+1B(z + jη)eh(z+jη)−h(z)

−



n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη)−h(z)


 eP (z) = −u(z)e−h(z).

(3.45)

By comparing the order of growth of both sides of (3.45), it is obvious that u(z) ≡
0. Therefore, (3.45) can be rewritten as

n+1∑

j=0

(−1)n+1−jCj
n+1B(z + jη)eh(z+jη)−h(z)

−



n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη)−h(z)


 eP (z) = 0.

(3.46)

In Subcase 2.2, we consider the following two subcases.
Subcase 2.2.1: Suppose that deg P = s < k − 1 = deg h − 1. Set P2(z) =

eh(z+η)−h(z). Then ρ(P2(z)) = deg h−1 ≥ 1, that is, P2(z) is a transcendental entire
function. Thus, for j = 1, 2, · · ·, n + 1, we have

eh(z+jη)−h(z) = eh(z+jη)−h(z+(j−1)η)eh(z+(j−1)η)−h(z+(j−2)η) · · · eh(z+η)−h(z)

= P2(z + (j − 1)η)P2(z + (j − 2)η) · · · P2(z).
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Then (3.46) is changed into the following form

L1(z, P2(z)) · P2(z) = (−1)n
(
1 + eP (z)

)
,(3.47)

where

L1(z, P2(z)) =
(

B(z + (n + 1)η)
B(z)

P2(z + nη)P2(z + (n− 1)η) · · · P2(z + η)

− Cn
n+1

B(z + nη)
B(z)

P2(z + (n− 1)η)P2(z + (n− 2)η) · · · P2(z + η)

+ · · ·+ (−1)nC1
n+1

B(z + η)
B(z)

)
− eP (z)

(
B(z + nη)

B(z)
P2(z + (n− 1)η)

P2(z + (n−2)η) · · · P2(z + η)−Cn−1
n

B(z + (n− 1)η)
B(z)

P2(z + (n−2)η)

P2(z + (n− 3)η) · · · P2(z + η) + · · ·+ (−1)n−1C1
n

B(z + η)
B(z)

)
.

Since ρ
(
(−1)n(1 + eP (z))

)
= deg P = s < k − 1, we can get

m
(
r, (−1)n(1 + eP (z))

)
= S(r, P2(z)).

And similar to the discussion of Subcase 1.1.2, we know

m

(
r,

B(z + jη)
B(z)

)
= S(r, P2(z)) (j = 1, 2, · · ·, n + 1).

Therefore, by using methods similar to Subcase 1.1.2, we can get

T (r, P2(z)) = m(r, P2(z)) = S(r, P2(z)),

which is a contradiction.
Subcase 2.2.2: Suppose that 1 ≤ deg P = s = k − 1 = deg h − 1. Set V (z) =

n∑

j=0

(−1)n−jCj
nB(z + jη)eh(z+jη)−h(z). Then ρ2 = ρ(V ) ≤ max{ρ(B), k − 1} < k,

and (3.46) can be rewritten as

eP (z) =
V (z + η)

V (z)
eh(z+η)−h(z) − 1.(3.48)

Obviously, V (z+η)
V (z) is an entire function. By Lemma 2.10, we see that for ε3 (0 <

3ε3 < deg h− ρ2), there exists a set E3 ⊂ (1,∞) of finite logarithmic measure such
that for all z satisfying |z| = r 6∈ [0, 1] ∪ E3,

exp{−rρ2−1+ε3} ≤
∣∣∣∣
V (z + η)

V (z)

∣∣∣∣ ≤ exp{rρ2−1+ε3} (j = 1, 2, · · ·, n).(3.49)
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Since V (z+η)
V (z) is an entire function, by (3.49), we can get

T

(
r,

V (z + η)
V (z)

)
= m

(
r,

V (z + η)
V (z)

)
≤ rρ2−1+ε3 ,

namely,

ρ

(
V (z + η)

V (z)

)
≤ ρ2 − 1 + ε3 < k − 1.

Since

T

(
r,

V (z)
V (z + η)

)
+ O(1) = T

(
r,

V (z + η)
V (z)

)
≤ rρ2−1+ε3 ,

we get

N

(
r,

V (z)
V (z + η)

)
≤ T

(
r,

V (z)
V (z + η)

)
≤ rρ2−1+ε3 .

Combining (3.48) with the second main theorem of Nevanlinna, we can get

T
(
r, eP (z)

)
≤ N

(
r, eP (z)

)
+ N

(
r,

1
eP (z)

)
+ N

(
r,

1
eP (z) + 1

)
+ S(r, eP (z))

≤ N


r,

1
V (z+η)

V (z) eh(z+η)−h(z)


 + S(r, eP (z))

≤ N


r,

1
V (z+η)

V (z) eh(z+η)−h(z)


 + S(r, eP (z))

≤ rρ2−1+ε3 + S(r, eP (z)) = S(r, eP (z)),

which contradicts that eP (z) is transcendental.
Thus, combining Case 1 with Case 2, Theorem 1.6 is proved. ¤
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