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ON THE DYNAMICAL PROPERTIES

OF SOME FUNCTIONS

Seung-Jae Yoo

Abstract. This note is concerned with some properties of fixed

points and periodic points. First, we have constructed a generalized

continuous function to give a proof for the fact that, as the reverse

of the Sharkovsky theorem[16], for a given positive integer n, there
exists a continuous function with a period-n point but no period-m

points where m is a predecessor of n in the Sharkovsky ordering. Also

we show that the composition of two transcendental meromorphic

functions, one of which has at least three poles, has infinitely many

fixed points.

1. Introduction

In the iteration theory, there are many important results for the

fixed points and periodic points which are originated by so many

mathematicians, notably P. Fatou[11], G. Julia[12], I.N. Baker[2,3]

and R. Devaney[10], W. Bergweiler[5,6,7] etc, who have interested in

this attractive subject insistently.

One of the remarkable results in this subject is the Sharkovsky the-

orem[16] published in 1964 that guarantees the existence of periodic

points of periods-all successors of a given period in the Sharkovsky

ordering. Also it is well-known that for a given positive integer n,

there exists a continuous function with n-periodic points.

In [2], I.N. Baker showed that a transcendental entire function has

periodic points of all periods except at most one integer, even though
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a transcendental entire function and a transcendental meromorphic

function need not have fixed points[11]. And W. Bergweiler showed

that the composite function f ◦ g of a transcendental entire function

g and a transcendental meromorphic function f has infinitely many

fixed points, and furthermore the same holds for the case of meromor-

phic function f which has at least two distinct poles[6].

In this note, we have constructed a generalized continuous function

Φ to give a proof for the fact that, as the reverse of the Sharkovsky the-

orem, for a given positive integer n, there exists a continuous function

with a period-n point but no period-m points where m is a predecessor

of n in the Sharkovsky ordering(Theorem A).

Also we show that the composition of two transcendental mero-

morphic functions, one of which has at least three poles, has infinitely

many fixed points(Theorem B).

2. Preliminaries

For a point x0 in the domain of a given function f ,

f [n](x0) = f(f [n−1](x0)), f [0](x0) = x0

for n = 1, 2, · · · is called the n-iterate x0 for f . If f [n](x0) = x0 and

any two elements of the set {x0, f(x0), · · · , f [n−1](x0)} are distinct,

then this set is called an n-cycle and we say that x0 has a period-n

for f .

Now we note some worthful results for the periodic points. I.N

Baker[2] proved that if a rational function f of degree d ≥ 2 has no

periodic points of period-n then (d, n) is one of the pairs

(2, 2), (2, 3), (3, 2), (4, 2).

Moreover, if f is a polynomial then the only case (2, 2) can occur

and in this case f is conjugate to the map g(z) = z2 − z. This results

can be strengthened as we see in section 4.
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The following two theorems are very wonderful even though they

only hold for one dimensional dynamical systems.

Theorem 2.1. (Li-Yorke) Suppose that f is a continuous real

valued function defined on the closed interval J so that F (J) ⊆ J . If

f has a period-3 point, then f has periodic points of all other periods.

The Sharkovsky ordering of the positive integers is defined as fol-

lows;

3 ⊲ 5 ⊲ · · ·
︸ ︷︷ ︸

odd integers

⊲ 2 · 3 ⊲ 2 · 5 ⊲ · · ·
︸ ︷︷ ︸

2·(odd integers)

⊲ 22 · 3 ⊲ 22 · 5 ⊲ · · ·
︸ ︷︷ ︸

22
·(odd integers)

⊲ · · · ⊲ · · · ⊲ 22 ⊲ 2 ⊲ 1
︸ ︷︷ ︸

powers of 2

Theorem 2.2. (Sharkovsky) Suppose that f is a continuous real

valued function defined on the closed interval J so that F (J) ⊆ J . If

f has a period-n point, then f has periodic points of period-m for all

successors m of n in the Sharkovsky ordering.

3. Construction of Φ

In this section, we devote to construct a function which has a

period-n point but has no periodic points of all predecessors in the

Sharkovsky ordering to give a proof of the following theorem A.

Theorem A. For each odd integer n ≥ 5, there exists a contin-

uous function f which has a period-n point but no period-(n − 2)

point.

For this, we mention the double of a function to guarantee the

existence of a function which has a period-double point. For a given

continuous function f defined on an interval I, the continuous function

f2, the double of f , is defined as follows;

Trisect I and I×I is decomposed into nine small squares. Compress

the graph of f into the upper left corner of I × I and let X be the

ending point of the graph of f . And the rest of the graph is filled with
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the two connected line segments, one is joining X with the left lower

edge of the lower right corner of I × I and the other is the diagonal in

the lower right corner of I×I. Then, we have the following properties;

Proposition 3.1. The function f2(x), the double of a given func-

tion f(x), has a periodic point of period-2n at x
3 if and only if x is a

period-n point for f .

Proof. Without loss of generality, we may assume that I is the unit

interval. So we have that for x ∈ I,

f2(x) =







2
3 + 1

3f(x) , x ∈ [0, 1
3 ]

− (2 + f(1
3 ))(x − 2

3) , x ∈ [ 13 , 2
3 ]

x − 2
3 , x ∈ [ 23 , 1]

and

f2(
x
3 ) = 2

3 + 1
3f(x).

Then, it is easy to check the results. �

Proposition 3.2. If f2(x), the double of f(x), has a periodic

point p that is not a fixed point, then either 3p or 3f2(p) is a periodic

point for f .

Proof. Note that there is an integer n so that f
[n]
2 [ 13 , 2

3 ] lies on

[0, 1
3 ] or [ 23 , 1] since f2 is linear on [ 13 , 2

3 ] with slope less than -2. Also

since f2[0, 1
3
] ⊂ [ 2

3
, 1] and f2[

2
3
, 1] ⊂ [0, 1

3
], there is no periodic point

on [ 1
3
, 2

3
]. Suppose that p is a period-n point for f2. Then we may

assume that p ∈ [0, 1
3
]. Since

f(x) = 3f2(
x
3 ) − 2 and f [n](x) = 3f

[2n]
2 (x

3 ) , n ≥ 1

we have that f(3p) = 3f2(p) − 2 and f [n](3p) = 3f
[2n]
2 (p) = 3p. Thus

3p is a periodic point of f . �

In order to prove the above theorem A, we need a following lemma.



ON THE DYNAMICAL PROPERTIES OF SOME FUNCTIONS 51

Lemma 3.3. Suppose that f is continuous on the closed interval

J so that f(J) ⊇ J . Then f has a fixed point in J .

Proof. Let r, s be minimum and maximum values of f in J , re-

spectively and let f(y) = r and f(z) = s for some y, z ∈ J . Then

since r < y , z < s, we have that if we let g(x) = f(x) − x, then

g(y) = f(y) − y ≤ 0 and g(z) = f(z) − z ≥ 0.

Thus, by the intermediate value theorem, there exists x0 ∈ J so

that g(x0) = 0. This means that x0 is a fixed point of f . �

From theorem A, we have the following result.

Colollary 3.4. For each odd integer p ≥ 5, there exists a con-

tinuous function f so that f has a 2mp-periodic point but has no

2m(p − 2)-periodic points for any positive integer m.

Proof. By theorem A, it is immediate that for each odd integer

p ≥ 5, there exists a continuous function f which has a p-periodic

point but no (p−2)-periodic points. Then by proposition 3.1 and 3.2,

the double f2 of f has a 2p-periodic point but no 2(p − 2)-periodic

points and also the double f22 of f2 has a 22p-periodic point but no

22(p−2)-periodic points. Inductively, we have that the double f2m of

f2m−1 has a 2mp-periodic point but no 2m(p − 2)-periodic points. �

Now, we give the proof of theorem A.

Proof of Theorem A. For each positive integer m, define a con-

tinuous function which is piecewise linear joining the vertices given

by

Φ(k) =







m + 2 , k = 1

2m + 5 − k , 2 ≤ k ≤ m + 2

2m + 4 − k , m + 3 ≤ k ≤ 2m + 3
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Then, Φ has a (2m + 3)-cycle

{1,m+2,m+3,m+1,m+4,m+5,m− 1, · · · , 3, 2m+2, 2, 2m+3}

Now, consider the image of [1, 2] under the iterate map Φ[2m+1] as

following;

[1, 2]
Φ
−→ [m + 2, 2m + 3]

Φ
−→ [1,m + 3]

Φ
−→ [m + 1, 2m + 3]

Φ
−→

[1,m + 4]
Φ
−→ [m, 2m + 3]

Φ
−→ [1,m + 5]

Φ
−→ [m − 1, 2m + 3]

Φ
−→

· · ·
Φ
−→ [1, 2m + 2]

Φ
−→ [2, 2m + 3]

That is Φ[2m+1]([1, 2]) = [2, 2m + 3] and so there is no fixed point of

Φ[2m+1] on [1, 2]. Similarly, we have that Φ has no period-(2m + 1)

points in [k, k+1] for all 1 ≤ k ≤ 2m+2, k 6= 2m+2. For the interval

[m + 2,m + 3], we have

Φ[2t][m + 2,m + 3] = [m + 2 − t,m + 3 + t]

and

Φ[2t+1][m + 2,m + 3] = [m + 1 − t,m + 3 + t]

for t = 1, 2, · · · ,m. So, we have

Φ[2m+1][m + 2,m + 3] ⊃ [m + 2,m + 3].

Thus Φ[2m+1] has a fix point in [m+2,m+3]. But since Φ is decreasing

on Φ[k][m + 2,m + 3] for k = 0, 1, 2, · · · , 2m, the (2m + 1)-iterate

Φ[2m+1] is decreasing on [m + 2,m + 3]. So, Φ[2m+1] has only one

fix point. But it is the fixed point of Φ since Φ[m + 2,m + 3] ⊂

[m + 2,m + 3]. Hence there is no period-(2m + 1) points for Φ. �

4. Fixed Points of Composite Map

In this section, for fixed points of composite map of some tran-

scendental meromorphic functions, we devote to give a proof for the

following theorem B.
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Theorem B. Let f, g be transcendental meromorphic functions

and f have at least three poles. Then the composite function f ◦ g

has infinitely many fixed points.

Before giving the proof, we make a mention of some remarkable

known results for the fixed points of a transcendental function. It

is clear that a transcendental entire function and a transcendental

meromorphic function need not have fixed points by a simple example

f(z) = z + ez. But by the considering the map φ(z) = f(f(z))−z

f(z)−z
, each

transcendental entire function f has at least one periodic point of

period 2[11]. Later, It is generalized by Baker[2] and Rosenbloom[15]

as follows ;

Theorem 4.1. A transcendental entire function has periodic poin-

ts of all periods except at most one integer.

Theorem 4.2. [5,7] Let f be transcendental meromorphic func-

tion which has exactly one pole and this pole is an omitted value.

Then f has infinitely many periodic points of period n ≥ 2.

In fact, such map in theorem 4.2 need not have fixed points, as

an example f(z) = z + 1
g(z) , where g(z) is a transcendental entire

function.

Also Bergweiler[6] showed that the composite function f ◦ g of a

transcendental entire function g and a transcendental meromorphic

function f has infinitely many fixed points, and furthermore the same

holds for the case of meromorphic function f which has at least two

distinct poles.

Now, we end this note by giving the proof for Theorem B by using

the following two Bergweiler’s lemmas[6].

Lemma 4.3. Let f be a meromorphic function, and let z0 be a pole

of f of order p. Then there exists a function h, defined and analytic
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in a neighborhood of 0 such that h(0) = 0 and f(h(z) + z0) = z−p for

z 6= 0.

Lemma 4.4. Let f and g be meromorphic functions. Then f ◦ g

has infinitely many fixed points if and only if g ◦ fdoes.

Proof of Theorem B. Let f be a transcendental meromorphic

function with three distinct poles z1, z2 and z3 of orders p1, p2 and

p3, respectively. Then by lemma 4.3, there exists functions hj , de-

fined and analytic in a neighborhood of 0 such that hj(0) = 0 and

f(hj(z) + zj) = z−pj , z 6= 0 for j = 1, 2, 3. Define

k1(z) = h2(z
p3p1 + z2)

k2(z) = h3(z
p1p2 + z3)

k3(z) = h1(z
p2p3 + z1).

Then each kj is analytic near 0 and

f(k1(z)) = f(k2(z)) = f(k3(z)) = z−p1p2p3

in a punctured neighborhood of 0.

Now let u be defined by

u(z) = g(z−p1p2p3).

Then 0 is an essential singularity of u and we have

u(z) = g(f(k1(z))) = g(f(k2(z))) = g(f(k3(z)))

in the punctured neighborhood of 0. Suppose that f ◦ g has only

finitely many fixed points. Then by lemma 4.4, g ◦ f has at most

finitely many fixed points. It follows that

u(z) 6= kj(z) , j = 1, 2, 3
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in a punctured neighborhood of 0. Moreover, we have

ki(z) 6= kj(z) if i 6= j

in some neighborhood of 0 since ki(0) 6= kj(0) for i 6= j. Now define

v(z) =
u(z) − k2(z)

u(z) − k3(z)
·
k1(z) − k3(z)

k1(z) − k2(z)
.

Then v does not take the values 0, 1 and ∞ in some small punctured

neighborhood of 0. Thus by Picard’s theorem[1], v is constant, but it

is a contradiction. �
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