1 |
M. Rosen, Abel's theorem on the lemniscate, Amer. Math. Monthly 88 (1981), no. 6, 387-395
DOI
ScienceOn
|
2 |
D. Duverney, Ke. Nishioka, Ku. Nishioka, and I. Shiokawa, Transcendence of Rogers- Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 7, 140-142
DOI
ScienceOn
|
3 |
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer- Verlag, 1990
|
4 |
T. Schneider, Transzendenzeigenschaften elliptischer Funktionen, J. Reine Angew. Math. 14 (1934), 70-74
|
5 |
C. Adiga and T. Kim, On a continued fraction of Ramanujan, Tamsui Oxf. J. Math. Sci. 19 (2003), no. 1, 55-65
|
6 |
K. Barre-Sirieix, G. Diaz, F. Gramain, and G. Philibert, Une preuve de la conjecture de Mahler-Manin, Invent. Math. 124 (1996), no. 1-3, 1-9
DOI
|
7 |
A. B. Ekin, The rank and the crank in the theory of partitions, Ph. D Thesis, University of Sussex, 1993
|
8 |
D. Bertrand, Series d'Eisenstein et transcendence, Bull. Soc. Math. France 104 (1976), no. 3, 309-321
|
9 |
D. Bertrand, Theta functions and transcendence, Ramanujan J. 1 (1997), no. 4, 339-350
DOI
|
10 |
H. H. Chan and Y. L. Ong, On Eisenstein series and , Proc. Amer. Math. Soc. 127 (1999), no. 6, 1735-1744
DOI
ScienceOn
|
11 |
L. Euler, Introduction to Analysis of the In¯nite, Springer-Verlag, 1988
|
12 |
N. J. Fine, Basic Hypergeometric Series and Applications, American Mathematical So- ciety, 1988
|
13 |
M. D. Hirschhorn, An identity of Ramanujan, and application, in 'q-series from a contemporary perspective', Contemp. Math. 254 (2000), 229-234
DOI
|
14 |
A. Hurwitz, Uber die Entwickelungscoefficienten der lemniscatischen Funktionen., Math. Ann. 51 (1898), no. 2, 196-226
DOI
|
15 |
D. Kim and J. K. Koo, Algebraic integer as values of elliptic functions, Acta Arith. 100 (2001), no. 2, 105-116
DOI
|
16 |
D. Kim and J. K. Koo, Algebraic numbers, transcendental numbers and elliptic curves derived from in¯nite products, J. Korean Math. Soc. 40 (2003), no. 6, 977-998
과학기술학회마을
DOI
|
17 |
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Press, 1962
|
18 |
L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. (1) 25 (1894), 318-343
DOI
|
19 |
A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), 1-122
|
20 |
L. J. Slater, Further identies of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147-167
DOI
|
21 |
B. C. Berndt, Ramanujan's Notebooks III, Springer, 1991
|
22 |
O. Kolberg, Some identities involving the partition function, Math. Scand. 5 (1957), 77-92
DOI
|
23 |
B. C. Berndt, Ramanujan's Notebooks V, Springer, 1998
|
24 |
B. C. Berndt, H. H. Chan, and L.-C. Zhang, Ramanujan's remarkable product of theta- functions, Proc. Edinburgh Math. Soc. (2) 40 (1997), no. 3, 583-612
DOI
ScienceOn
|
25 |
B. C. Berndt and A. Yee, On the generalized Rogers-Ramanujan continued fraction, Ramanujan J. 7 (2003), no. 1-3, 321-331
DOI
|
26 |
S. Lang, Elliptic Functions, Addison-Wesley, 1973
|
27 |
S. Ramanujan, Modular equations and approximations to , Quart. J. Math (Oxford) 45 (1914), 350-372
|
28 |
V. A. Lebesgue, Sommation de quelques series, J. Math. Pure. Appl. 5 (1840), 42-71
|
29 |
D. Mumford, Tata Lectures on Theta I, Birkhauser Boston, Inc., Boston, MA, 1983
|
30 |
S. Ramanujan, Collected Papers, Chelsea, 1962
|