A RESULT ON A CONJECTURE OF W. LÜ, Q. LI AND C. YANG

Sujoy Majumder

Abstract

In this paper, we investigate the problem of transcendental entire functions that share two values with one of their derivative. Let f be a transcendental entire function, n and k be two positive integers. If $f^{n}-Q_{1}$ and $\left(f^{n}\right)^{(k)}-Q_{2}$ share 0 CM , and $n \geq k+1$, then $\left(f^{n}\right)^{(k)} \equiv$ $\frac{Q_{2}}{Q_{1}} f^{n}$. Furthermore, if $Q_{1}=Q_{2}$, then $f=c e^{\frac{\lambda}{n} z}$, where Q_{1}, Q_{2} are polynomials with $Q_{1} Q_{2} \not \equiv 0$, and c, λ are non-zero constants such that $\lambda^{k}=1$. This result shows that the Conjecture given by W. Lü, Q. Li and C. Yang [On the transcendental entire solutions of a class of differential equations, Bull. Korean Math. Soc. 51 (2014), no. 5, 1281-1289.] is true. Also we exhibit some examples to show that the conditions of our result are the best possible.

1. Introduction definitions and results

In this paper, by a meromorphic (resp. entire) function we will always mean meromorphic (resp. entire) function in the complex plane \mathbb{C}. We denote by $n(r, \infty ; f)$ the number of poles of f lying in $|z|<r$, the poles are counted according to their multiplicities. The quantity

$$
N(r, \infty ; f)=\int_{0}^{r} \frac{n(t, \infty ; f)-n(0, \infty ; f)}{t} d t+n(0, \infty ; f) \log r
$$

is called the integrated counting function or simply the counting function of poles of f.

Also $m(r, \infty ; f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta$ is called the proximity function of poles of f, where $\log ^{+} x=\log x$, if $x \geq 1$ and $\log ^{+} x=0$, if $0 \leq x<1$.

The sum $T(r, f)=m(r, \infty ; f)+N(r, \infty ; f)$ is called the Nevanlinna's characteristic function of f. We denote by $S(r, f)$ any quantity satisfying $S(r, f)=$ $o\{T(r, f)\}$ as $r \rightarrow \infty$ except possibly a set of finite linear measure.

For $a \in \mathbb{C}$, we put $N(r, a ; f)=N\left(r, \infty ; \frac{1}{f-a}\right)$ and $m(r, a ; f)=m\left(r, \infty ; \frac{1}{f-a}\right)$.

Received October 23, 2014; Revised May 26, 2015.
2010 Mathematics Subject Classification. Primary 30D35.
Key words and phrases. meromorphic function, derivative, small function.

Let us denote by $\bar{n}(r, a ; f)$ the number of distinct a points of f lying in $|z|<r$, where $a \in \mathbb{C} \cup\{\infty\}$. The quantity

$$
\bar{N}(r, a ; f)=\int_{0}^{r} \frac{\bar{n}(t, a ; f)-\bar{n}(0, a ; f)}{t} d t+\bar{n}(0, a ; f) \log r
$$

denotes the reduced counting function of a points of f (see, e.g., $[5,13]$).
Let k be a positive integer and $a \in \mathbb{C} \cup\{\infty\}$. We use $N_{k)}(r, a ; f)$ to denote the counting function of a-points of f with multiplicity not greater than k, $N_{(k+1}(r, a ; f)$ to denote the counting function of a-points of f with multiplicity greater than k. Similarly $\bar{N}_{k)}(r, a ; f)$ and $\bar{N}_{(k+1}(r, a ; f)$ are their reduced functions respectively.

Let f and g be two non-constant meromorphic functions and let a be a complex number. We say that f and g share a CM, provided that $f-a$ and $g-a$ have the same zeros with the same multiplicities. In addition, we say that f and g share ∞ CM, if $1 / f$ and $1 / g$ share 0 CM.

A meromorphic function a is said to be a small function of f provided that $T(r, a)=S(r, f)$, that is $T(r, a)=o(T(r, f))$ as $r \rightarrow \infty$ except possibly a set of finite linear measure.

During the last four decades the uniqueness theory of entire and meromorphic functions has become a prominent branch of the value distribution theory (see [13]).

Rubel-Yang [9] proposed to investigate the uniqueness of an entire function f under the assumption that f and its derivative f^{\prime} share two complex values. Subsequently, related to one or two value sharing similar considerations have been made with respect to higher derivatives and more general (linear) differential expressions by Brück [1], Gundersen [3], Mues-Steinmetz [8], Yang [11] et al.

In this direction an interesting problem still open is the following conjecture proposed by Brück [1].

Conjecture A. Let f be a non-constant entire function. Suppose

$$
\rho_{1}(f):=\limsup _{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r}
$$

is not a positive integer or infinite. If f and f^{\prime} share one finite value a $C M$, then

$$
\frac{f^{\prime}-a}{f-a}=c
$$

for some non-zero constant c.
The case that $a=0$ and that $N\left(r, 0 ; f^{\prime}\right)=S(r, f)$ had been proved by Brück [1] while the case that f is of finite order had been proved by Gundersen-Yang [4]. However, the corresponding conjecture for meromorphic functions fails in general (see [4]).

To the knowledge of the author perhaps Yang-Zhang [12] (see also [14]) were the first to consider the uniqueness of a power of a meromorphic (resp. entire) function $F=f^{n}$ and its derivative F^{\prime} when they share certain value as this type of considerations gives most specific form of the function.

As a result during the last decade, growing interest has been devoted to this setting of entire functions. Improving all the results obtained in [12], Zhang [14] proved the following theorem.
Theorem A ([14]). Let f be a non-constant entire function, n, k be positive integers and $a(z)(\not \equiv 0, \infty)$ be a meromorphic small function of f. Suppose $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share the value $0 C M$ and

$$
n>k+4
$$

then $f^{n} \equiv\left(f^{n}\right)^{(k)}$, and f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
In 2009 Zhang and Yang [15] further improved the above result in the following manner.
Theorem B ([15]). Let f be a non-constant entire function, n, k be positive integers and $a(z)(\equiv \equiv 0, \infty)$ be a meromorphic small function of f. Suppose $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share the value $0 C M$ and

$$
n>k+1
$$

Then conclusion of Theorem A holds.
In 2010 Zhang and Yang [16] further improved the above result in the following manner.
Theorem C ([16]). Let f be a non-constant entire function, n and k be positive integers. Suppose f^{n} and $\left(f^{n}\right)^{(k)}$ share $1 C M$ and

$$
n \geq k+1
$$

Then conclusion of Theorem A holds.
In 2011 Lü and Yi [6] proved the following theorem by using the theory of normal families.

Theorem D ([6]). Let f be a transcendental entire function, n, k be two integers with $n \geq k+1, F=f^{n}$ and $Q \not \equiv 0$ be a polynomial. If $F-Q$ and $F^{(k)}-Q$ share the value $0 C M$, then $F \equiv F^{(k)}$ and $f=c e^{w z / n}$, where c and w are non-zero constants such that $w^{k}=1$.

Now observing the above theorem W. Lü, Q. Li and C. Yang [7] asked the following question.
Question. What can be said if $f^{n}-Q_{1}$ and $\left(f^{n}\right)^{(k)}-Q_{2}$ share the value 0 CM ? Where Q_{1}, Q_{2} are polynomials, $Q_{1} Q_{2} \not \equiv 0$.

In [7] W. Lü, Q. Li and C. Yang solved the above question for $k=1$ by giving the transcendental entire solutions of the equation

$$
\begin{equation*}
F^{\prime}-Q_{1}=R e^{\alpha}\left(F-Q_{2}\right), \tag{1.1}
\end{equation*}
$$

where $F=f^{n}, R$ is a rational function and α is an entire function and they obtained the following results.

Theorem E ([7]). Let f be a transcendental entire function and let $F=f^{n}$ be a solution of equation (1.1), $n \geq 2$ be an integer. Then $\frac{Q_{1}}{Q_{2}}$ is a polynomial, and

$$
f^{\prime}=\frac{Q_{1}}{n Q_{2}} f
$$

Theorem F ([7]). Let f be a transcendental entire function, $n \geq 2$ be an integer. If $f^{n}-Q$ and $\left(f^{n}\right)^{\prime}-Q$ share $0 C M$, where $Q \not \equiv 0$ is a polynomial, then

$$
f=c e^{z / n},
$$

where c is a non-zero constant.
As well, at the end of the paper W. Lü, Q. Li and C. Yang [7] posed the following conjecture.

Conjecture B. Let f be a transcendental entire function, n be a positive integer. If $f^{n}-Q_{1}$ and $\left(f^{n}\right)^{(k)}-Q_{2}$ share $0 C M$, and $n \geq k+1$, then $\left(f^{n}\right)^{(k)}=\frac{Q_{2}}{Q_{1}} f^{n}$. Furthermore, if $Q_{1}=Q_{2}$, then $f=c e^{w z / n}$, where Q_{1}, Q_{2} are polynomials with $Q_{1} Q_{2} \not \equiv 0$, and, c, w are non-zero constants such that $w^{k}=1$.

Our objective to write this paper is to solve the above Conjecture B. The following theorem is the main result in this paper.

Theorem 1.1. Let f be a transcendental entire function, n and k be two positive integers. If $f^{n}-Q_{1}$ and $\left(f^{n}\right)^{(k)}-Q_{2}$ share $0 C M$, and $n \geq k+1$, then $\left(f^{n}\right)^{(k)}=\frac{Q_{2}}{Q_{1}} f^{n}$. Furthermore, if $Q_{1}=Q_{2}$, then $f=c e^{\frac{\lambda}{n} z}$, where Q_{1}, Q_{2} are polynomials with $Q_{1} Q_{2} \not \equiv 0$, and, c, λ are non-zero constants such that $\lambda^{k}=1$.

Remark 1.1. It is easy to see that the condition $n \geq k+1$ in Theorem 1.1 is sharp by the following examples.

Example 1.1. Let

$$
f(z)=e^{2 z}+z
$$

Then $f-Q_{1}$ and $f^{\prime}-Q_{2}$ share 0 CM , but $f^{\prime} \not \equiv \frac{Q_{2}}{Q_{1}} f$, where $Q_{1}(z)=z+1$ and $Q_{2}(z)=3$.

Example 1.2. Let

$$
f(z)=e^{2 z}+z^{2}+z
$$

Then $f-Q_{1}$ and $f^{\prime}-Q_{2}$ share 0 CM , but $f^{\prime} \not \equiv \frac{Q_{2}}{Q_{1}} f$, where $Q_{1}(z)=z^{2}+z+1$ and $Q_{2}(z)=2 z+3$.

Remark 1.2. By the following example, it is easy to see that the hypothesis of the transcendental of f in Theorem 1.1 is necessary.
Example 1.3. Let

$$
f(z)=z
$$

Then $f^{2}-Q_{1}$ and $\left(f^{2}\right)^{\prime}-Q_{2}$ share 0 CM , but $\left(f^{2}\right)^{\prime} \not \equiv \frac{Q_{2}}{Q_{1}} f^{2}$, where $Q_{1}(z)=$ $2 z^{2}+z$ and $Q_{2}(z)=2 z^{2}+4 z$.

2. Lemmas

In this section we present the lemmas which will be needed in the sequel.
Lemma 2.1 ([2]). Suppose that f is a transcendental meromorphic function and that

$$
f^{n} P(f)=Q(f)
$$

where $P(f)$ and $Q(f)$ are differential polynomials in f with functions of small proximity related to f as the coefficients and the degree of $Q(f)$ is at most n. Then

$$
m(r, \infty ; P(f))=S(r, f)
$$

Lemma 2.2 ([10]). Let f be a non-constant meromorphic function and let $a_{n}(z)(\not \equiv 0), a_{n-1}(z), \ldots, a_{0}(z)$ be meromorphic functions such that $T\left(r, a_{i}(z)\right)$ $=S(r, f)$ for $i=0,1,2, \ldots, n$. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{1} f+a_{0}\right)=n T(r, f)+S(r, f)
$$

Lemma 2.3 ([5]). Let f be a non-constant meromorphic function and let $a_{1}(z)$, $a_{2}(z)$ be two meromorphic functions such that $T\left(r, a_{i}\right)=S(r, f), i=1,2$. Then

$$
T(r, f) \leq \bar{N}(r, \infty ; f)+\bar{N}\left(r, a_{1} ; f\right)+\bar{N}\left(r, a_{2} ; f\right)+S(r, f)
$$

3. Proofs of the theorems

Proof of Theorem 1.1. Let $F_{1}=\frac{f^{n}}{Q_{1}}$ and $G_{1}=\frac{\left[f^{n}\right]^{(k)}}{Q_{2}}$. Clearly F_{1} and G_{1} share 1 CM except for the zeros of $Q_{i}(z)$, where $i=1,2$ and so

$$
\bar{N}\left(r, 1 ; F_{1}\right)=\bar{N}\left(r, 1 ; G_{1}\right)+S(r, f)
$$

Let

$$
\begin{equation*}
\Phi=\frac{F_{1}^{\prime}\left(F_{1}-G_{1}\right)}{F_{1}\left(F_{1}-1\right)} \tag{3.1}
\end{equation*}
$$

We now consider the following two cases.
Case 1. $\Phi \not \equiv 0$.
From the fundamental estimate of logarithmic derivative it follows that

$$
m(r, \infty ; \Phi)=S(r, f)
$$

Let z_{0} be a zero of f of multiplicity p such that $Q_{i}\left(z_{0}\right) \neq 0$, where $i=1,2$. Then z_{0} will be a zero of F_{1} and G_{1} of multiplicities $n p$ and $n p-k$ respectively and so from (3.1) we get

$$
\begin{equation*}
\Phi(z)=O\left(\left(z-z_{0}\right)^{n p-k-1}\right) \tag{3.2}
\end{equation*}
$$

Since $n \geq k+1$, it follows that Φ is holomorphic at z_{0}. From this and the hypotheses of Theorem 1.1 we see that

$$
N(r, \infty ; \Phi)=S(r, f)
$$

Consequently $T(r, \Phi)=S(r, f)$. Also from (3.1) we get

$$
\frac{1}{F_{1}}=\frac{1}{\Phi} \frac{F_{1}^{\prime}}{F_{1}\left(F_{1}-1\right)}\left[1-\frac{Q_{1}}{Q_{2}} \frac{\left(f^{n}\right)^{(k)}}{f^{n}}\right]
$$

and so

$$
m\left(r, \infty ; \frac{1}{F_{1}}\right)=S(r, f)
$$

Hence

$$
\begin{equation*}
m\left(r, \infty ; \frac{1}{f}\right)=S(r, f) \tag{3.3}
\end{equation*}
$$

We consider the following two subcases.
Subcase 1.1. Let $n>k+1$.
From (3.2) we see that

$$
\begin{equation*}
N(r, 0 ; f) \leq N(r, 0 ; \Phi) \leq T\left(r, \frac{1}{\Phi}\right) \leq T(r, \Phi)+O(1)=S(r, f) \tag{3.4}
\end{equation*}
$$

Now from (3.3) and (3.4) we get

$$
T(r, f)=S(r, f)
$$

which is a contradiction.
Subcase 1.2. Let $n=k+1$.
From (3.2) we see that

$$
N_{(2}(r, 0 ; f) \leq N(r, 0 ; \Phi) \leq T(r, \Phi)+O(1)=S(r, f)
$$

Then (3.3) gives

$$
\begin{equation*}
T(r, f)=N_{1)}(r, 0 ; f)+S(r, f) \tag{3.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
F=f^{n} \tag{3.6}
\end{equation*}
$$

Since $F-Q_{1}$ and $F^{(k)}-Q_{2}$ share 0 CM , then there exists an entire function α, such that

$$
\begin{equation*}
F^{(k)}-Q_{2}=e^{\alpha}\left(F-Q_{1}\right) . \tag{3.7}
\end{equation*}
$$

First we suppose that α is a non-constant entire function.
By differentiation from (3.7) we get

$$
\begin{equation*}
F^{(k+1)}-Q_{2}^{\prime}=\alpha^{\prime} e^{\alpha}\left(F-Q_{1}\right)+e^{\alpha}\left(F^{\prime}-Q_{1}^{\prime}\right) \tag{3.8}
\end{equation*}
$$

Now combining (3.7) and (3.8) we get

$$
\begin{align*}
& F^{(k+1)} F-\alpha^{\prime} F^{(k)} F-F^{(k)} F^{\prime} \tag{3.9}\\
= & Q_{1} F^{(k+1)}-\left(\alpha^{\prime} Q_{1}+Q_{1}^{\prime}\right) F^{(k)}-Q_{2} F^{\prime}+\left(Q_{2}^{\prime}-\alpha^{\prime} Q_{2}\right) F \\
& +\alpha^{\prime} Q_{1} Q_{2}+Q_{2} Q_{1}^{\prime}-Q_{1} Q_{2}^{\prime} .
\end{align*}
$$

Note that from (3.7) we get

$$
T\left(r, e^{\alpha}\right) \leq(k+2) T\left(r, f^{n}\right)+O(\log r)+S(r, f)=n(k+2) T(r, f)+S(r, f)
$$

Since $T\left(r, \alpha^{\prime}\right)=S\left(r, e^{\alpha}\right)$, it follows that $T\left(r, \alpha^{\prime}\right)=S(r, f)$.
By induction, we deduce from (3.6) that

$$
\begin{gathered}
F^{\prime}=n f^{n-1} f^{\prime} \\
F^{\prime \prime}=n(n-1) f^{n-2}\left(f^{\prime}\right)^{2}+n f^{n-1} f^{\prime \prime} \\
F^{\prime \prime \prime}=n(n-1)(n-2) f^{n-3}\left(f^{\prime}\right)^{3}+3 n(n-1) f^{n-2} f^{\prime} f^{\prime \prime}+n f^{n-1} f^{\prime \prime \prime}
\end{gathered}
$$

and so on.
Thus in general we have

$$
\begin{equation*}
F^{(k)}=\sum_{\lambda} a_{\lambda} f^{l_{0}^{\lambda}}\left(f^{\prime}\right)^{l_{1}^{\lambda}} \cdots\left(f^{(k)}\right)^{l_{k}^{\lambda}}, \tag{3.10}
\end{equation*}
$$

where $l_{0}^{\lambda}, l_{1}^{\lambda}, \ldots, l_{k}^{\lambda}$ are non-negative integers satisfying $\sum_{j=0}^{k} l_{j}^{\lambda}=n, n-k \leq$ $l_{0}^{\lambda} \leq n-1$ and a_{λ} are constants.

Also we set

$$
\begin{equation*}
F^{(k+1)}=\sum_{\lambda} b_{\lambda} f^{p_{0}^{\lambda}}\left(f^{\prime}\right)^{p_{1}^{\lambda}} \cdots\left(f^{(k+1)}\right)^{p_{k+1}^{\lambda}} \tag{3.11}
\end{equation*}
$$

where $p_{0}^{\lambda}, p_{1}^{\lambda}, \ldots, p_{k+1}^{\lambda}$ are non-negative integers satisfying $\sum_{j=0}^{k+1} p_{j}^{\lambda}=n, n-$ $k-1 \leq p_{0}^{\lambda} \leq n-1$, i.e., $0 \leq p_{0}^{\lambda} \leq n-1$ and b_{λ} are constants.

Substituting (3.6), (3.10) and (3.11) into (3.9), we have

$$
\begin{equation*}
f^{n} P(f)=Q(f), \tag{3.12}
\end{equation*}
$$

where $Q(f)$ is a differential polynomial in f of degree n and

$$
\begin{equation*}
P(f)=\sum_{\lambda} b_{\lambda} f^{p_{0}^{\lambda}}\left(f^{\prime}\right)^{p_{1}^{\lambda}} \cdots\left(f^{(k)}\right)^{p_{k+1}^{\lambda}}-\alpha^{\prime} \sum_{\lambda} a_{\lambda} f^{l_{0}^{\lambda}}\left(f^{\prime}\right)^{l_{1}^{\lambda}} \cdots\left(f^{(k)}\right)^{l_{k}^{\lambda}} \tag{3.13}
\end{equation*}
$$

$$
\begin{aligned}
& -n f^{\prime} \sum_{\lambda} a_{\lambda} f^{l_{0}^{\lambda}-1}\left(f^{\prime}\right)^{l_{1}^{\lambda}} \cdots\left(f^{(k)}\right)^{l_{k}^{\lambda}} \\
= & A\left(f^{\prime}\right)^{k+1}+R_{1}(f),
\end{aligned}
$$

is a differential polynomial in f of the degree $k+1$, where A is a suitable constant and $R_{1}(f)$ is a differential polynomial in f. In particular every monomial of R_{1} has the form

$$
R\left(\alpha^{\prime}\right) f^{q_{0}^{\lambda}}\left(f^{\prime}\right)^{q_{1}^{\lambda}} \cdots\left(f^{(k+1)}\right)^{q_{k+1}^{\lambda}},
$$

where $q_{0}^{\lambda}, \ldots, q_{k+1}^{\lambda}$ are non-negative integers satisfying $\sum_{j=0}^{k+1} q_{j}^{\lambda}=n$ and $1 \leq$ $q_{0}^{\lambda} \leq n-1, R\left(\alpha^{\prime}\right)$ is a polynomial in α^{\prime} with constant coefficients.

First we suppose $P(f) \not \equiv 0$. Then by Lemma 2.1 we get $m(r, \infty ; P)=S(r, f)$ and so

$$
\begin{equation*}
T(r, P)=S(r, f) \tag{3.14}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
T\left(r, P^{\prime}\right)=S(r, f) \tag{3.15}
\end{equation*}
$$

Note that from (3.13) we get

$$
\begin{equation*}
P^{\prime}(f)=A(k+1)\left(f^{\prime}\right)^{k} f^{\prime \prime}+B \alpha^{\prime}\left(f^{\prime}\right)^{k+1}+S_{1}(f) \tag{3.16}
\end{equation*}
$$

is a differential polynomial in f, where B is a suitable constant and $S_{1}(f)$ is a differential polynomial in f. In particular every monomial of S_{1} has the form

$$
S\left(\alpha^{\prime}\right) f^{r_{0}^{\lambda}}\left(f^{\prime}\right)^{r_{1}^{\lambda}} \cdots\left(f^{(k+1)}\right)^{r_{k+1}^{\lambda}}
$$

where $r_{0}^{\lambda}, \ldots, r_{k+1}^{\lambda}$ are non-negative integers satisfying $\sum_{j=0}^{k+1} r_{j}^{\lambda}=n$ and $1 \leq$ $r_{0}^{\lambda} \leq n-1, S\left(\alpha^{\prime}\right)$ is a polynomial in α^{\prime} with constant coefficients.

Let z_{1} be a simple zero of f. Then from (3.13) and (3.16) we have

$$
P\left(z_{1}\right)=A\left\{f^{\prime}\left(z_{1}\right)\right\}^{k+1}
$$

and

$$
P^{\prime}\left(z_{1}\right)=A(k+1)\left\{f^{\prime}\left(z_{1}\right)\right\}^{k} f^{\prime \prime}\left(z_{1}\right)+B \alpha^{\prime}\left\{f^{\prime}\left(z_{1}\right)\right\}^{k+1} .
$$

This shows that z_{1} is a zero of $P f^{\prime \prime}-\left[K_{1} P^{\prime}-K_{2} \alpha^{\prime} P\right] f^{\prime}$, where K_{1} and K_{2} are suitably constants. Let

$$
\begin{equation*}
\Phi_{1}=\frac{P f^{\prime \prime}-\left[K_{1} P^{\prime}-K_{2} \alpha^{\prime} P\right] f^{\prime}}{f} \tag{3.17}
\end{equation*}
$$

Clearly $\Phi_{1} \not \equiv 0$ and

$$
T\left(r, \Phi_{1}\right)=S(r, f)
$$

From (3.17) we obtain

$$
\begin{equation*}
f^{\prime \prime}=\alpha_{1} f+\beta_{1} f^{\prime}, \tag{3.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{1}=\frac{\Phi_{1}}{P}, \quad \beta_{1}=K_{1} \frac{P^{\prime}}{P}-K_{2} \alpha^{\prime} \tag{3.19}
\end{equation*}
$$

and

$$
T\left(r, \alpha_{1}\right)=S(r, f), \quad T\left(r, \beta_{1}\right)=S(r, f) .
$$

Now from (3.13) and (3.19) we get

$$
\begin{align*}
P^{\prime} & =\left(\frac{\beta_{1}}{K_{1}}+\frac{K_{2}}{K_{1}} \alpha^{\prime}\right) P \tag{3.20}\\
& =A\left(\frac{\beta_{1}}{K_{1}}+\frac{K_{2}}{K_{1}} \alpha^{\prime}\right)\left(f^{\prime}\right)^{k+1}+\left(\frac{\beta_{1}}{K_{1}}+\frac{K_{2}}{K_{1}} \alpha^{\prime}\right) R_{1}(f)
\end{align*}
$$

Also from (3.16) and (3.18) we obtain

$$
\begin{equation*}
P^{\prime}=A(k+1) \alpha_{1} f\left(f^{\prime}\right)^{k}+\left\{A(k+1) \beta_{1}+B \alpha^{\prime}\right\}\left(f^{\prime}\right)^{k+1}+S_{1}(f) \tag{3.21}
\end{equation*}
$$

By (3.20) and (3.21) we get

$$
\begin{align*}
& \left(\frac{A}{K_{1}} \beta_{1}-A(k+1) \beta_{1}+\frac{A K_{2}}{K_{1}} \alpha^{\prime}+B \alpha^{\prime}\right)\left(f^{\prime}\right)^{k+1}+A(k+1) \alpha_{1} f\left(f^{\prime}\right)^{k} \tag{3.22}\\
& +\left(\frac{\beta_{1}}{K_{1}}+\frac{K_{2}}{K_{1}} \alpha^{\prime}\right) R_{1}(f)+S_{1}(f) \equiv 0
\end{align*}
$$

Since $\alpha_{1} \not \equiv 0$, from (3.22) we get

$$
\begin{equation*}
N_{1)}(r, 0 ; f)=S(r, f) \tag{3.23}
\end{equation*}
$$

Therefore from (3.5) and (3.23) we have

$$
T(r, f)=S(r, f)
$$

which is a contradiction.
Next we suppose $P(f) \equiv 0$. Then $Q(f) \equiv 0$ from (3.12), where

$$
\begin{aligned}
Q(f)= & Q_{1} F^{(k+1)}-\left(\alpha^{\prime} Q_{1}+Q_{1}^{\prime}\right) F^{(k)}-Q_{2} F^{\prime}+\left(Q_{2}^{\prime}-\alpha^{\prime} Q_{2}\right) F \\
& +\alpha^{\prime} Q_{1} Q_{2}+Q_{2} Q_{1}^{\prime}-Q_{1} Q_{2}^{\prime}
\end{aligned}
$$

We get from (3.9) that

$$
F^{(k+1)} F-\alpha^{\prime} F^{(k)} F-F^{(k)} F^{\prime} \equiv 0,
$$

i.e.,

$$
\begin{equation*}
\frac{F^{(k+1)}}{F^{(k)}} \equiv \alpha^{\prime}+\frac{F^{\prime}}{F} \tag{3.24}
\end{equation*}
$$

By integration we have $F^{(k)}=d F e^{\alpha}$, where d is a non-zero constant. Substituting this and (3.6) into (3.7) we have

$$
(d-1) f^{n}=\frac{Q_{2}-Q_{1} e^{\alpha}}{e^{\alpha}}
$$

Clearly $d \neq 1$ and all zeros of $Q_{2}-Q_{1} e^{\alpha}$ have the multiplicities at least n. Since $n=k+1$, by Lemma 2.3 we get

$$
\begin{aligned}
T\left(r, e^{\alpha}\right) & \leq \bar{N}\left(r, 0 ; e^{\alpha}\right)+\bar{N}\left(r, \infty ; e^{\alpha}\right)+\bar{N}\left(r, \frac{Q_{2}}{Q_{1}} ; e^{\alpha}\right)+S\left(r, e^{\alpha}\right) \\
& \leq \frac{1}{n} N\left(r, \frac{Q_{2}}{Q_{1}} ; e^{\alpha}\right)+S\left(r, e^{\alpha}\right) \\
& \leq \frac{1}{n} T\left(r, e^{\alpha}\right)+S\left(r, e^{\alpha}\right)
\end{aligned}
$$

which is a contradiction since we first assume that e^{α} is a non-constant entire function.

Next we suppose that e^{α} is a non-zero constant, say D. Then from (3.7) we have

$$
\begin{equation*}
F^{(k)}-D F \equiv Q_{2}-D Q_{1} \tag{3.25}
\end{equation*}
$$

Since $n=k+1$, it follows from (3.25) that

$$
N(r, 0 ; f)=S(r, f)
$$

Now by (3.3) we get

$$
T(r, f)=S(r, f)
$$

which is a contradiction.
Case 2. $\Phi \equiv 0$.
Now from (3.1) we get $F_{1} \equiv G_{1}$, i.e., $\left(f^{n}\right)^{(k)} \equiv \frac{Q_{2}}{Q_{1}} f^{n}$. Furthermore if $Q_{1}=Q_{2}$, then $f^{n} \equiv\left(f^{n}\right)^{(k)}$, and f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
Acknowledgement. The author is grateful to the referee for his/her valuable comments and suggestions towards the improvement of the paper.

References

[1] R. Brück, On entire functions which share one value CM with their first derivative, Results Math. 30 (1996), no. 1-2, 21-24.
[2] J. Clunie, On integral and meromorphic functions, J. London Math. Soc. 37 (1962), 17-22.
[3] G. G. Gundersen, Meromorphic functions that share finite values with their derivative, J. Math. Anal. Appl. 75 (1980), no. 2, 441-446.
[4] G. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J. Math. Anal. Appl. 223 (1998), no. 1, 88-95.
[5] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[6] F. Lü and H. X. Yi, The Brück conjecture and entire functions sharing polynomials with their k-th derivatives, J. Korean Math. Soc. 48 (2011), no. 3, 499-512.
[7] W. Lü, Q. Li, and C. Yang, On the transcendental entire solutions of a class of differential equations, Bull. Korean Math. Soc. 51 (2014), no. 5, 1281-1289.
[8] E. Mues and N. Steinmetz, Meromorphe Funktionen, die mit ihrer ersten und zweiten Ableitung einen endlichen Wert teilen, Complex Var. Theory Appl. 6 (1986), no. 1, 51-71.
[9] L. A. Rubel and C. C. Yang, Values shared by an entire function and its derivative, Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976), pp. 101-103. Lecture Notes in Math., Vol. 599, Springer, Berlin, 1977.
[10] C. C. Yang, On deficiencies of differential polynomials. II, Math. Z. 125 (1972), 107112.
[11] L. Z. Yang, Entire functions that share finite values with their derivatives, Bull. Austral. Math. Soc. 41 (1990), no. 3, 337-342.
[12] L. Z. Yang and J. L. Zhang, Non-existence of meromorphic solutions of a Fermat type functional equation, Aequationes Math. 76 (2008), no. 1-2, 140-150.
[13] H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995.
[14] J. L. Zhang, Meromorphic functions sharing a small function with their derivatives, Kyungpook Math. J. 49 (2009), no. 1, 143-154.
[15] J. L. Zhang and L. Z. Yang, A power of a meromorphic function sharing a small function with its derivative, Ann. Acad. Sci. Fenn. Math. 34 (2009), no. 1, 249-260.
[16] _, A power of an entire function sharing one value with its derivative, Comput. Math. Appl. 60 (2010), no. 7, 2153-2160.

Department of Mathematics
Katwa College
Burdwan, 713130, India
E-mail address: sujoy.katwa@gmail.com, smajumder05@yahoo.in

