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ON THE TRANSCENDENTAL ENTIRE SOLUTIONS OF A

CLASS OF DIFFERENTIAL EQUATIONS

Weiran Lü, Qiuying Li, and Chungchun Yang

Abstract. In this paper, we consider the differential equation

F ′ −Q1 = Reα(F −Q2),

where Q1 and Q2 are polynomials with Q1Q2 6≡ 0, R is a rational function

and α is an entire function. We consider solutions of the form F = fn,

where f is an entire function and n ≥ 2 is an integer, and we prove that

if f is a transcendental entire function, then Q1

Q2

is a polynomial and

f ′ = Q1

nQ2

f. This theorem improves some known results and answers an

open question raised in [16].

1. Introduction and main results

In this paper, a meromorphic (resp. entire) function means meromorphic
(resp. analytic) in the whole complex plane. We shall adopt the standard
notations in Nevanlinna’s value distribution theory of meromorphic functions.
Such as, the characteristic function

T (r, f) = N(r, f) +m(r, f),

the counting function of the poles

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,

the proximity function

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ,

where

log+ x = logmax{x, 1} = max{logx, 0} (x ≥ 0),

and the reduced counting function N(r, f) (see, e.g., [6, 14]).
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Given a meromorphic function f, recall that α 6≡ 0,∞ is a small function
with respect to f, if T (r, α) = S(r, f), where S(r, f) denotes any quantity
satisfying S(r, f) = o{T (r, f)} as r → ∞, possibly outside a set of r of finite
linear measure. In addition, let f and g be two nonconstant meromorphic
functions, a ∈ C ∪ {∞}. If f − a and g − a have the same zeros with the same
multiplicities, we say that they share the value a CM (Counting multiplies).

The subject on sharing values between entire functions and their derivatives
was first studied by Rubel and Yang [12]. They proved a result in 1977 that
if a non-constant entire function f and f ′ share two distinct finite numbers
a, b CM, then f = f ′. Since then, shared value problems have been studied by
many authors and a number of profound results have been obtained (see, e.g.,
[5, 11, 17]).

To state our main result, we also need the following concepts.

Definition 1. The order ρ(f) and the hyper-order ρ2(f) of a meromorphic
function f are defined by

ρ(f) = lim sup
r→∞

logT (r, f)

log r
, ρ2(f) = lim sup

r→∞

log logT (r, f)

log r
,

respectively.

In 1996, Brück [1] studied the relation between f and f ′ if an entire function
f shares only one finite value CM with its derivative f ′. Meanwhile, he posed
the following famous conjecture.

Brück Conjecture. Let f be a non-constant entire function such that the

hyper-order ρ2(f) of f is not a positive integer and ρ2(f) < ∞. If f and f ′

share a finite value a CM, then f ′−a = c(f−a), where c is a nonzero constant.

In fact, Brück Conjecture for the case a = 0 had been proved by R. Brück
in [1]. For the case that f is of finite order had been proved by Gundersen and
Yang [5]; the case that ρ(f) = ∞ and ρ2(f) < 1/2 had been proved by Chen
and Shon [2].

Under some additional assumptions, there are many results related to Brück
Conjecture (see, e.g., [9, 10] and [13, 15, 16]). Based on this, it is interesting
to ask whether Brück Conjecture holds if the function f is replaced by n-th
powers fn.

In 2008, C. L. Lei and M. L. Fang et al. proved:

Theorem A ([8]). Suppose that f is a non-constant meromorphic function,

n, k are positive integers and n ≥ k + 5, a is a nonzero constant. If fn and

(fn)(k) share a CM, then f = c ewz/n, where c and w are nonzero constants

such that wk = 1.

Recently, J. L. Zhang and L. Z. Yang obtained the following result.

Theorem B ([15]). Let f be a non-constant entire function, n be a positive

integer. If fn and (fn)(k) share 1 CM, and n ≥ k + 1, then fn = (fn)(k), and
f = c ewz/n, where c and w are nonzero constants such that wk = 1.
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In 2011, F. Lü and H. Yi proved the following theorem by using the theory
of normal families.

Theorem C ([10]). Let f be a transcendental entire function, n, k be two

integers with n ≥ k + 1, F = fn and Q 6≡ 0 be a polynomial. If F − Q and

F (k) −Q share the value 0 CM, then F = F (k) and f = c ewz/n, where c and

w are nonzero constants such that wk = 1.

According to the above theorems, one may ask an interesting question: what
can be said “if fn−Q1 and (fn)(k)−Q2 share the value 0 CM”? where Q1 and
Q2 are polynomials, and Q1Q2 6≡ 0. Our purpose in this article is to solve this
question for k = 1 by giving the transcendental entire solutions of the equation

(1) F ′ −Q1 = Reα(F −Q2),

where F = fn, R is a rational function and α is an entire function. As an
application, we now use a different method from that in [8, 10, 16] completely
and give the following results.

Theorem 1. Let f be a transcendental entire function and let F = fn be a

solution of equation (1), n ≥ 2 be an integer, then Q1

Q2

is a polynomial, and

f ′ =
Q1

nQ2
f.

From Theorem 1, we have the following results.

Corollary 1. Let f be a transcendental entire function, n ≥ 2 be an integer.

If fn −Q and (fn)′ −Q share 0 CM, where Q 6≡ 0 is a polynomial, then

f = c ez/n,

where c is a nonzero constant.

Obviously, Corollary 1 shows that Theorem 1 is an improvement of Theorem
C in the case k = 1, and answers an open question raised in [16].

Corollary 2. If Q1

Q2

is not a polynomial, then equation (1) has no transcen-

dental entire solution, where n ≥ 2 is an integer.

In order to illustrate our condition n ≥ 2 is sharp, we give examples as
follows.

Example 1. Let f(z) = ee
z ∫ z

0 e−et(1− et)t dt. Then f is a non-constant solu-
tion of

f ′ − z = ez(f − z),

and f ′ − z, f − z share 0 CM, while f 6≡ f ′.

Example 2. Let f(z) = e3z + 2z
3 + 2

9 . Then f is a non-constant solution of

f ′ − z = 3(f − z),

and f − z, f − z′ share 0 CM, but f 6≡ f ′.
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We give an example to show that the hypothesis of the transcendency of f
in Theorem 1 is necessary.

Example 3. Let f(z) = z, Q1(z) = Q2(z) = 2z2 − 2z, and let n = 2, k = 1.
Then f is a solution of

F ′ −Q1 = 2(F −Q2),

where F = f2, while f 6≡ f ′.

2. Preliminaries

In order to prove the results, we need some lemmas.

Lemma 2.1 ([14, Theorem 1.47]). Let α be a non-constant entire function,

and h = eα. Then

T (r, α) = o(T (r, h)), T (r, α′) = S(r, h).

Lemma 2.2 ([3, 4]). Suppose that f is a transcendental meromorphic function

and that

fnP (f) = Q(f),

where P (f) and Q(f) are differential polynomials in f with functions of small

proximity related to f as the coefficients and the degree of Q(f) is at most n.
Then

m(r, P (f)) = S(r, f).

Lemma 2.3 ([7, 14]). Let f be a transcendental meromorphic function. Then

m(r,
f (l)

f
) = S(r, f)

for every positive integer l.

Lemma 2.4 ([6, 14]). Let f be a meromorphic function, and αi(i = 1, 2, 3) be
three distinct small functions of f . Then

T (r, f) ≤ N(r,
1

f − α1
) +N(r,

1

f − α2
) +N(r,

1

f − α3
) + S(r, f).

3. Proof of Theorem 1

To prove Theorem 1, we first write equation (1) as

eα =
F ′ −Q1

R(F −Q2)
,

which and the result of Milloux (see, e.g. [6, Theorem 3.1]) will show that

T (r, eα) ≤ 3T (r, F ) +O(log r) + S(r, F ) = 3nT (r, f) + S(r, f).

On combining this with Lemma 2.1, we deduce T (r, α) = S(r, f).
By differentiation to equation (1) we have

(2) F ′′ −Q′

1 = (R′ +Rα′)eα(F −Q2) +Reα(F ′ −Q′

2).
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Moreover, combining (1) with (2) yields

(F ′′ −Q′

1)(F −Q2) = (
R′

R
+ α′)(F ′ −Q1)(F −Q2) + (F ′ −Q1)(F

′ −Q′

2),

i.e.,

F ′′F − (
R′

R
+ α′)FF ′ − (F ′)2(3)

= {Q′

1 − (
R′

R
+ α′)Q1}F +Q2F

′′ − {(
R′

R
+ α′)Q2 +Q′

2 +Q1}F
′

+ (
R′

R
+ α′)Q1Q2 +Q1Q

′

2 −Q′

1Q2.

Substituting F ′ = nfn−1f ′, F = fn into (3) results in

(4) fnfn−2P = Q,

where

P = nff ′′ − n(
R′

R
+ α′)ff ′ − n(f ′)2,

and Q is a differential polynomial in f with the degree n.
Lemma 2.2 gives m(r, fn−2P ) = S(r, f), and

(5) T (r, fn−2P ) = S(r, f).

We now prove P ≡ 0. Suppose that P 6≡ 0, and n ≥ 3, by (5) and Lemma 2.2,
we obtain T (r, f) = S(r, f), which is impossible.

We may now assume that n = 2. So we get

(6) P = 2ff ′′ − 2(
R′

R
+ α′)ff ′ − 2(f ′)2.

Since we can now set n = 2, it follows from (5) and Lemma 2.3 that

T (r, P ) = S(r, f), m(r,
P

f2
) = S(r, f).

The two equalities above show that m(r, 1
f2 ) = S(r, f), and thus

(7) m(r,
1

f
) = S(r, f).

In addition, we can see from the expression of P that the multiple zeros of f
must be zeros of P, and we get

N(r,
1

f
) = N(r,

1

f
) + S(r, f).

This together with (7) and the first fundamental theorem of Nevanlinna theory
will result in

(8) T (r, f) = N(r,
1

f
) + S(r, f).
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By (6), we find

(9) P ′ = 2ff ′′′ − 2(
R′

R
+ α′)′ff ′ − 2(

R′

R
+ α′)ff ′′ − 2(

R′

R
+ α′)(f ′)2 − 2f ′f ′′.

Let z0 be a simple zero of f such that R(z0) 6= 0, ∞, by (6) and (9), we have
P (z0) + 2{f ′(z0)}

2 = 0 and

P ′(z0) = −2(
R′(z0)

R(z0)
+ α′(z0)){f

′(z0)}
2 − 2f ′(z0)f

′′(z0),

which implies that z0 is a zero of Pf ′′ + [(R
′

R + α′)P − P ′]f ′. Let

(10) g =
Pf ′′ + [(R

′

R + α′)P − P ′]f ′

f
.

Obviously g 6≡ 0 and

T (r, g) = S(r, f).

By (10) we obtain

(11) f ′′ = α1f + β1f
′,

where α1 = g/P , β1 = P ′/P − (R′/R+ α′), and

T (r, α1) = S(r, f), T (r, β1) = S(r, f).

Substituting (11) into (6) will yield

(12) P = 2α1f
2 + 2[β1 − (

R′

R
+ α′)]ff ′ − 2(f ′)2.

Also from (11), we find

(13) f ′′′ = α2f + β2f
′,

where α2 = α′

1 + α1β1, β2 = α1 + β′

1 + β2
1 , and

T (r, α2) = S(r, f), T (r, β2) = S(r, f).

It follows from (13), (11) and (9) that

(14) P ′ = 2γ1f
2 + 2γ2ff

′ − 2γ3(f
′)2,

where

γ1 = α2 − (
R′

R
+ α′)α1,

γ2 = β2 − (
R′

R
+ α′)β1 − (

R′

R
+ α′)′ − α1,

γ3 =
R′

R
+ α′ + β1.

From (12) and (14), we get

(15) P ′ = 2γ1f
2 + 2γ2ff

′ − 2γ3{α1f
2 + [β1 − (

R′

R
+ α′)]ff ′ −

P

2
}.
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Note P ′ = (α′ + β1 +
R′

R )P, we deduce from (15) that

(16) {α′

1−2α1(α
′+

R′

R
)}f+{β′

1−(
R′

R
+α′)′−(

R′

R
+α′)β1+(

R′

R
+α′)2}f ′ = 0.

Suppose first that α′

1 − 2α1(
R′

R + α′) ≡ 0, then α1 = cR2e2α, where c is a
nonzero constant, which implies T (r, eα) = S(r, f).

By (1) and (8), we have Q1 − RQ2e
α ≡ 0, and f ′ = Q1

nQ2

f, which is the

desired result.
We now assume that α′

1 − 2α1(
R′

R + α′) 6≡ 0, (16) shows that

N(r,
1

f
) = S(r, f),

which also contradicts with (8). Hence P ≡ 0. It follows from (4) and (3) that
Q ≡ 0 and

(17) F ′′F − (
R′

R
+ α′)F ′F − (F ′)2 = 0.

In view of (17) this gives

F ′′

F ′
=

R′

R
+ α′ +

F ′

F
.

By integration, we have F ′ = dRF eα, where d is a nonzero constant. Substi-
tuting this into (1) will yield

(18) (d− 1)Rfn =
Q1 −RQ2e

α

eα
.

If d = 1, by this and equation (1), we have

f ′ =
Q1

nQ2
f.

Now let d 6= 1. If f has infinitely many zeros, and if eα is not constant, then
the zeros of f are zeros of Q1 −RQ2e

α (up to finitely many which are poles of
R ) with multiplicities at least n. We have by (18) and Lemma 2.4 that

T (r, eα) ≤ N(r, eα) +N(r,
1

eα
) +N(r,

1

eα −Q1/(RQ2)
) + S(r, eα),

which and n ≥ 2 may lead to a contradiction, and we know that eα is a
constant, say eα = B, from (18) we get Q1 −BRQ2 ≡ 0, which contradicts the
assumption.

Suppose now that f has finitely many zeros, and let f = meβ, where m is a
polynomial and β is an entire function. In this case, (18) can be written as

(19)
(1− d)mn

Q2
enβ +

Q1

RQ2
e−α = 1.

Then from (19), it follows that

nT (r, f) = T (r, enβ) + S(r, f) = T (r, eα) + S(r, f) = S(r, f),
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which is impossible. This proves Theorem 1.

We conjecture the following extension of Theorem 1.

Conjecture. Let f be a transcendental entire function, n be a positive integer.

If fn −Q1 and (fn)(k) −Q2 share 0 CM, and n ≥ k+1, then (fn)(k) = Q1

Q2

fn.

Further, if Q1 = Q2, then f = c ewz/n, where Q1, Q2 are polynomials with

Q1Q2 6≡ 0, and c, w are nonzero constants such that wk = 1.

Finally, we conclude the paper with the following:

Question 1. What can be said if the condition in the Conjecture “fn” be
replaced by “P (f)”? where P (z) =

∑n
i=0 aiz

i.

Question 2. What can be said if the condition in the Conjecture “(fn)(k)” be
replaced by “{f(z + c1)f(z + c2) · · · f(z + cn)}

(k)”? where cj (j = 1, 2, . . . , n)
are constants.
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[17] T. D. Zhang and W. R. Lü, Notes on a meromorphic function sharing one small function

with its derivative, Complex Var. Elliptic Equ. 53 (2008), no. 9, 857–867.

Weiran Lü
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