• Title/Summary/Keyword: torus bundle

Search Result 11, Processing Time 0.019 seconds

Representations of the Braid Group and Punctured Torus Bundles

  • Morifuji, Takayuki;Suzuki, Masaaki
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.1
    • /
    • pp.7-14
    • /
    • 2009
  • In this short note, we consider a family of linear representations of the braid group and the fundamental group of a punctured torus bundle over the circle. We construct an irreducible (special) unitary representation of the fundamental group of a closed 3-manifold obtained by the Dehn filling.

MORITA EQUIVALENCE FOR NONCOMMUTATIVE TORI

  • Park, Chun-Gil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.249-254
    • /
    • 2000
  • We give an easy proof of the fact that every noncommutative torus $A_{\omega}$ is stably isomorphic to the noncommutative torus $C(\widehat{S\omega}){\;}\bigotimes{\;}A_p$ which hasa trivial bundle structure. It is well known that stable isomorphism of two separable $C^{*}-algebras$ is equibalent to the existence of eqivalence bimodule between the two stably isomorphic $C^{*}-algebras{\;}A_{\omega}$ and $C(\widehat{S\omega}){\;}\bigotimes{\;}A_p$.

  • PDF

THE TENSOR PRODUCTS OF SPHERICAL NON-COMMUTATIVE TORI WITH CUNTZ ALGEBRAS

  • Park, Chun-Gil;Boo, Deok-Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.127-139
    • /
    • 1997
  • The spherical non-commutative $\mathbb{S}_{\omega}$ were defined in [2,3]. Assume that no non-trivial matrix algebra can be factored out of the $\mathbb{S}_{\omega}$, and that the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus with a matrix algebra $M_k(\mathbb{C})$. It is shown that the tensor product of the spherical non-commutative torus $\mathbb{S}_{\omega}$ with the even Cuntz algebra $\mathcal{O}_{2d}$ has a trivial bundle structure if and only if k and 2d - 1 are relatively prime, and that the tensor product of the spherical non-commutative torus $S_{\omega}$ with the generalized Cuntz algebra $\mathcal{O}_{\infty}$ has a non-trivial bundle structure when k > 1.

  • PDF

THE TENSOR PRODUCT OF AN ODD SPHERICAL NON-COMMUTATIVE TORUS WITH A CUNTZ ALGEBRA

  • Boo, Deok-Hoon;Park, Chun-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.151-161
    • /
    • 1998
  • The odd spherical non-commutative tori $\mathbb{S}_{\omega}$ were defined in [2]. Assume that no non-trivial matrix algebra can be factored out of $\mathbb{S}_{\omega}$, and that the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus with a matrix algebra $M_{km}(\mathbb{C})$. It is shown that the tensor product of $\mathbb{S}_{\omega}$ with the even Cuntz algebra $\mathcal{O}_{2d}$ has the trivial bundle structure if and, only if km and 2d - 1 are relatively prime, and that the tensor product of $\mathbb{S}_{\omega}$ with the generalized Cuntz algebra $\mathcal{O}_{\infty}$ has a non-trivial bundle structure when km > 1.

  • PDF

ZETA FUNCTIONS OF GRAPH BUNDLES

  • Feng, Rongquan;Kwak, Jin-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.6
    • /
    • pp.1269-1287
    • /
    • 2006
  • As a continuation of computing the zeta function of a regular covering graph by Mizuno and Sato in [9], we derive in this paper computational formulae for the zeta functions of a graph bundle and of any (regular or irregular) covering of a graph. If the voltages to derive them lie in an abelian or dihedral group and its fibre is a regular graph, those formulae can be simplified. As a by-product, the zeta function of the cartesian product of a graph and a regular graph is obtained. The same work is also done for a discrete torus and for a discrete Klein bottle.

GOTTLIEB GROUPS ON LENS SPACES

  • Pak, J.;Woo, Moo-Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.621-627
    • /
    • 1999
  • In this paper we compute Gottlieb groups for generalized lens spaces. Then we apply this result to compute Gottlieb groups for total spaces of a principal torus bundle over a lens space.

  • PDF

ON THE STRUCTURE OF NON-COMMUTATIVE TORI

  • Boo, Deok-Hoon;Park, Won-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • The non-commutative torus $A_{\omega}=C^*(\mathbb{Z}^n,{\omega})$ may be realized as the $C^*$-algebra of sections of a locally trivial $C^*$-algebra bundle over $\widehat{S_{\omega}}$ with fibres $C^*(\mathbb{Z}^n/S_{\omega},{\omega}_1)$ for some totally skew multiplier ${\omega}_1$ on $\mathbb{Z}^n/S_{\omega}$. It is shown that $A_{\omega}{\otimes}M_l(\mathbb{C})$ has the trivial bundle structure if and only if $\mathbb{Z}^n/S_{\omega}$ is torsion-free.

  • PDF

T-STRUCTURE AND THE YAMABE INVARIANT

  • Sung, Chan-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.435-443
    • /
    • 2012
  • The Yamabe invariant is a topological invariant of a smooth closed manifold, which contains information about possible scalar curvature on it. It is well-known that a product manifold $T^m{\times}B$ where $T^m$ is the m-dimensional torus, and B is a closed spin manifold with nonzero $\^{A}$-genus has zero Yamabe invariant. We generalize this to various T-structured manifolds, for example $T^m$-bundles over such B whose transition functions take values in Sp(m, $\mathbb{Z}$) (or Sp(m - 1, $\mathbb{Z}$) ${\oplus}\;{{\pm}1}$ for odd m).

TENSOR PRODUCTS OF C*-ALGEBRAS WITH FIBRES GENERALIZED NONCOMMUTATIVE TORI AND CUNTZ ALGEBRAS

  • Boo, Deok-Hoon;Park, Chun-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.139-144
    • /
    • 2000
  • The generalized noncommutative torus $T_{\rho}^d$ of rank m was defined in [2]. Assume that for the completely irrational noncommutative subtorus $A_{\rho}$ of rank m of $T_{\rho}^d$ there is no integer q > 1 such that $tr(K_0(A_{\rho}))=\frac{1}{q}{\cdot}tr(K_0(A_{\rho^{\prime}}))$ for $A_{\rho^{\prime}}$ a completely irrational noncommutative torus of rank m. All $C^*$-algebras ${\Gamma}({\eta})$ of sections of locally trivial $C^*$-algebra bundles ${\eta}$ over $M=\prod_{i=1}^{e}S^{2k_i}{\times}\prod_{i=1}^{s}S^{2n_i+1}$, $\prod_{i=1}^{s}\mathbb{PR}_{2n_i}$, or $\prod_{i=1}^{s}L_{k_i}(n_i)$ with fibres $T_{\rho}^d{\otimes}M_c(\mathbb{C})$ were constructed in [6, 7, 8]. We prove that ${\Gamma}({\eta}){\otimes}M_{p^{\infty}}$ is isomorphic to $C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C}){\otimes}M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p, that $\mathcal{O}_{2u}{\otimes}{\Gamma}({\eta})$ is isomorphic to $\mathcal{O}_{2u}{\otimes}C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C})$ if and only if cd and 2u - 1 are relatively prime, and that $\mathcal{O}_{\infty}{\otimes}{\Gamma}({\eta})$ is not isomorphic to $\mathcal{O}_{\infty}{\otimes}C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C})$ if cd > 1 when no non-trivial matrix algebra can be ${\Gamma}({\eta})$.

  • PDF