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ZETA FUNCTIONS OF GRAPH BUNDLES

RoNGQuAaN FENG AND JIN HO KwAK

ABSTRACT. As a continuation of computing the zeta function of
a regular covering graph by Mizuno and Sato in [9], we derive in
this paper computational formulae for the zeta functions of a graph
bundle and of any (regular or irregular) covering of a graph. If
the voltages to derive them lie in an abelian or dihedral group and
its fibre is a regular graph, those formulae can be simplified. As a
by-prod-ct, the zeta function of the cartesian product of a graph
and a regular graph is obtained. The same work is also done for a
discrete torus and for a discrete Klein bottle.

1. Introduction

In this paper we consider an undirected finite simple graph. Let
G be a graph with vertex set V(G) and edge set E(G). The degree
degg(v) of a vertex v in G is the number of edges of G incident with
v. An automorphism of G is a permutation of the vertex set V(G) that
preserves adjacency. The set of automorphisms forms a permutation
group, called the automorphism group Aut(G) of G.

A (vg, vn)-path P of length n in G is a sequence P = (vg,v1, ..., Up—1,
vp) of n+ 1 vertices and n edges such that consecutive vertices share
an edge (we do not require that all vertices are distinct). Sometimes,
the path P is also considered as a subgraph of G. We say that a path
has a backtracking if vi_1 = vi41 for some i, 1 <i<n—1. A (v, vp)-
path is called a eycle if vg = v,. The inverse cycle of a cycle C =
(v0,v1,...,Vn-1,v0) is the cycle C! = (vo,vn_1,...,v1,v0).

A subpath (v1,...,um-1,vm) of a cycle C = (vi,...,Um,...,01) is
called a tail if dego(vi) = 1, dego(vi) = 2, 2 < ¢ < m — 1, and
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degq(vm) > 3, where deg (v) is the degree of v in the subgraph C. Each
cycle C' without backtracking determines a unique tail-less, backtrack-
ing-less cycle C* by removing all tails of C. Note that any backtracking-
less tail-less cycle C is just a cycle such that both C and C? have
no backtracking (see [4], [11]). Two backtracking-less, tail-less cycles
Ci = (v1,...,vm) and Cy = (wy,...,wn) are called equivalent if there
is k such that w; = v;44 for all j, where the subscripts are module
m. Let [C] denote the equivalence class which contains a cycle C. A
backtracking-less, tail-less cycle C is primitive if C is not obtained by
going r times around some other cycle B, i.e., C # B" for r > 2. Note
that each equivalence class of primitive, backtracking-less and tail-less
cycles of a graph G corresponds to a conjugacy class of the fundamental
group m (G, v) of G for a vertex v € V(G).

The (Ihara) zeta function [13] of a graph G is defined to be the func-
tion of u € C with u sufficiently small, given by

2(Gu) = Zg(u) = [ J(1 -« )7,
(]

where [C] runs over all equivalence classes of primitive, backtracking-less
and tail-less cycles of G and v(C) denotes the length of C. Clearly, the
zeta function of a disconnected graph is the product of the zeta functions
of its connected components. Zeta functions of graphs were originated
from zeta functions of regular graphs by Ihara [5], where their reciprocals
are expressed as explicit polynomials. A zeta function of a regular graph
G associated to a unitary representation of the fundamental group of G
was developed by Sunada [14]. Hashimoto [4] treated multivariable zeta
functions of bipartite graphs. Northshield [11] proved that the number
of spanning trees in a graph G can be expressed in terms of the zeta
function Zg(u).

Let G be a connected graph with V(G) = {v1,...,vm}. The adja-
cency matriz A(G) = (ai;) is an m x m matrix with a;; = 1 if v; and v;
are adjacent and a;; = 0 otherwise. Let D¢ denote the diagonal matrix
with diagonal entries df = deg;(v;), 1 <i < m, and let Qg = Dg — 1.
The Thara’s result on zeta functions of regular graphs is generalized as
follows.

THEOREM 1. (Bass [1]) Let G be a connected graph with m vertices
and s edges. Then the reciprocal of the zeta function of G is given by

Zo(u)™t = (1 — u?)* ™ det (I — A(G)u+ Qgu?) .



Zeta functions of graph bundles 1271

Note that Theorem 1 is still true for a disconnected graph G.

Later, Stark and Terras [13] gave an elementary proof of Theorem
1 and discussed three different zeta functions of a graph. Mizuno and
Sato [9] gave a decomposition formula for the zeta function of a regular
covering of a graph. In this paper, we compute the zeta function of a
graph bundle. In section 2, a formula for the zeta function of a graph
bundle is derived by Theorem 1 and a decomposition formula for the
zeta function of any (regular or irregular) covering graph is given. In
Sections 3 and 4, we compute the zeta function of a graph bundle when
its voltages lie in an abelian group or in a dihedral group and whose
fibre is a regular graph. The zeta function of a cartesian product of a
graph with a regular graph is given in Section 3 too. As an application,
in Section 5, the zeta functions of a discrete torus and of a discrete Klein
bottle are computed.

2. Computing zeta functions of graph bundles

Let G be a connected graph and let G be the digraph obtained from
G by replacing each edge of G with a pair of oppositely directed edges.
The set of direzted edges of G is denoted by E(G). By 1, we mean the
reverse edge to an edge e € E(G). We denote the directed edge e of G by
wv if the initial and terminal vertices of e are u and v, respectively. For a,
finite group I, a I-voltage assignment on G is a function ¢ : E (é) - T
such that ¢(e™!) = ¢(e)~! for all e € E(G). We denote the set of all
I'-voltage assignments on G by C*(G;T).

Let F be another graph and let ¢ € CY(G; Aut(F)). Now, we con-
struct a new graph G x?F with the vertex set V(G x?F) = V(G)xV (F),
and two vertices (uy,v1) and (ug,vs) are adjacent in G x® F if either

uug € E(G) and vy = v‘f(uluz) or u; = up and vive € E(F). We call
G x? F the F-bundle over G associated with ¢ (or, simply a graph bun-
dle) and the first coordinate projection induces the bundle projection
p?: G x? F — G. The graphs G and F are called the base and the fibre
of the graph bundle G x? F, respectively. Note that the map p® maps
vertices to vertices, but the image of an edge can be either an edge or
a vertex. If F = K, the complement of the complete graph K, of n
vertices, then an F-bundle over G is just an n-fold graph covering of G.
If ¢(e) is the identity of Aut(F) for all e € E(G), then G x?¢ F is just
the cartesian product of G and F'. (See [6]).
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Let ¢ be an Aut(F)-voltage assignment on G. For each v € Aut(F),
let G(¢ +) denote the spanning subgraph of the digraph G whose directed
edge set is ¢~!(y). Thus the digraph G is the edge-disjoint union of
spanning subgraphs é(dm% v € Aut(F). Let V(G) = {u1,u2,...,Un}
and V(F) = {v1,v2,...,v,}. We define an order relation < on V(G x?F)
as follows: for (u;,vk), (uj,ve) € V(G x® F), (ug,v) < (uj,ve) if and
only if either k¥ < £ or k = £ and i < j. Let P(y) denote the n x n
permutation matrix associated with v € Aut(F') corresponding to the
action of Aut(F) on V(F), i.e., its (¢, 7)-entry P(y)y = 1 if v] = v; and
P(%)ij =0 otherwise. Then for any ,6 € Aut(F'), P(évy) = P(0)P(y).
The tensor product A ® B of the matrices A and B is considered as the
matrix B having the element b;; replaced by the matrix Ab;;. Kwak
and Lee formulated the adjacency matrix A(G x? F) of a graph bundle
G x? F as follows.

THEOREM 2. ([7])

AGx* ) = S AGim) ®P() | +In® AF),

YEAut(F)

where P(v) is the n x n permutation matrix associated with y € Aut(F)
corresponding to the action of Aut(F) on V(F'), and I, is the identity
matrix of order m = |V(G)|.

For any vertex (u;, vk) € V(G x?F), its degree is dS +df, where d¥ =
degg(u;) and df = degp(vx). Therefore, Dgyop = Dg ® In + Im ® DF
and then Qaoyér = Dayer — Imn = (Dg — I.)® I, + I, ® Dp =
Qc ® I, + I, ® Dp. Furthermore, if we set |E(G)| = s and |E(F)| =1t,
then

E(G ¢ F)| =

Zf_: d8 + dfy

1 k=1
:%( Z +m2dk> = ns -+ mi.
k=1

The following theorem follows immediately from Theorem 1.

Do =

.

THEOREM 3. Let G be a connected graph with m vertices and s
edges, F a graph with n vertices and t edges and let ¢ be an Aut(F)-
voltage assignment on G. Then the reciprocal of the zeta function of
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G x?®Fis

ZGX"’F(U')_‘I
— (1 _ u2)(ns+mt)—mn

x det (Imn— (Y. A(Ggp) ® P(7) + Im ® A(F))u
vEAut(F)

+(Q¢ ® Iy + I, ® Dp)u?).

In the following, we consider three particular cases of Theorem 3: (i)
F = K,, (ii) = 1 is trivial, or more generally all voltages lie in an
abelian group, and (iii) all voltages lie in a dihedral group. The last two
cases will be treated in Sections 3 and 4, respectively.

As the first case, let F = K, be n isolated vertices. Then any
Aut(K,)-voltage assignment is just a permutation voltage assignment
defined in [3], and G x?® K, = G? is just an n-fold covering graph of G.
In this case, it may not be a regular covering. Hence,

Zgs(u)™?
— (1 _ u2)(s—m)n

/
x det ‘ Imn — ZA(6(¢,7)) ® P(y) | u+ (Qg ® I,)u?
\ ~yel

A representation p of a group I' over the complex field C is a group
homomorphism from I" to the general linear group GL(r,C) of all 7 x r
invertible matrices over C. The number r is called the degree of the
representation p (see [15]). Let ¢ € C1(G;Aut(K,)) be a permutation
voltage assignment on G, and let T' = (¢(e) | e € E(G)) be the subgroup
of S, = Aut(K,) generated by the voltages ¢(e). Then, it is clear
that the homomorphism P : I' — GL(n,C) defined by v — P(v) is a
representation of I', which is called the permutation representation of T'.
Let p1 = 1,p2....,p¢ be the nonequivalent irreducible representations
of T" and let f, be the degree of p; for 1 < ¢ < £, so that Zle 2=
[T'|. It is well-known [15] that the permutation representation P can
be decomposed as the direct sum of irreducible representations: Say
P = @le m;p; with multiplicities m;. Then, there exists an invertible
matrix M such that

£
M P )M =P (pi(7) © In,)
=1
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for any v € ', where A1 @ --- @ A denotes the block diagonal matrix
with diagonal blocks A, ..., Ag consecutively. Noting that A(G) =

> er A(C_j(gi,,,y)) and YF_, mif; = n, we have

(Im ® M)~ 1Y A(Gi4) ® P(y) | u+ (Qe ® In)u?
~yerl
X (I, ® M)
£
= Ipp — @ Z(A(é(¢,7)) ® Pi('Y)) ® Iy, u -+ (QG & In)u2
i=1 \ €l

£
= P | Ins, — | D_ACg) ®pi(7) | u+ Qe @ Ij)u? | @ Iy,

=1 ¥l

Furthermore, it is known [12] that m4 is the number of orbits under the
action of the group T, so that my >'1. Therefore, the zeta function of a
(regular or irregular) covering G is

Zgo(u)™!
= ((1 — u2)5_m det(I, — A(G)u + quz))m1

x H 2) =M det(Lng, — (> A(Gg,) ® pil7))u

~yerl

+(Qc ® I, )u?))™.

Since Zg(u)™! = (1 — u?)*"™" det(I,, — A(G)u + Qgu?), we have the
following theorem.

THEOREM 4. Let G be a connected graph with m vertices and s
edges, ¢ € C1(G; Aut(K,)) a permutation voltage assignment on G, and
letT = (¢(e) | e € E(G)) be the subgroup generated by the voltages (e).
Let p1 =1, po, ..., pg be the irreducible representations of I' with degrees
fi, fa,- .., fo, respectively. Then the reciprocal of the zeta function of
the n-fold covering G® of G derived from the voltage assignment ¢ is

£

Zos() ™ = (Zo(w)™)™ I (1 - wd)e=mF Tw)™,

=2
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where

(1) Tiw) =det [ Lns, — [ S A(Gip) @ i) | u+ (Qc ® Ip)u?
yel

and m; is the multiplicity of p; in the permutation representation P of T'.
It gives another proof of Corollary 1 in Section 2 in [13].

COROLLARY 5. (Stark and Terras [13]) For every connected covering
graph G® of the graph G, the inverse zeta function Zg(u)~! divides
Zqu (u)-—l.

If T acts on itself by right multiplication, then I' can be identified
as a regular subgroup of Sp and the covering G? is a regular covering
of G. In this case, the multiplicity m; is equal to the degree f; of the
irreducible representation p;. Therefore, we have Theorem 2 in [9] as a
corollary.

COROLLARY 6. (Mizuno and Sato [9]) The reciprocal of the zeta
function of the connected regular covering G® of G derived from an
ordinary voltage assignment ¢ : E(G) — T is

Zgo W)™t = Za(u)™? H < (s m)fi ’L(U))fz ’

where T;(u) is given in Eq (1).

For a voltage assignment ¢ : E (C_j) — I and an irreducible repre-
sentation p of I', the L-function of G associated to p and ¢ is defined
by

c(u, p, & Hdet (If - C))u”(c))_l ,

where f is the degree of p, ¢(C) is the net voltage on C and [C] runs over
all equivalence classes of primitive, backtracking-less and tail-less cycles
of G (see [4], [5] and {14]). It was proved in [9] that, for the irreducible
representations p; of T',

Zg(u, pi, @)1 = (1 — u?) =™ Ty(u),

where T;(u) is given in Eq (1). Therefore we have the following corollary.
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COROLLARY 7. Under the same assumptions as in Theorem 4, we
have

£
ZG¢ (u) = H ZG(“) Pis ¢)mz,
i=1

where m; is the multiplicity of p; in the permutation representation P
of T.

EXAMPLE 1. Let n = 3 and I = S3, so that G? is a 3-fold covering of
G. The symmetric group S3 has three irreducible representations p; = 1,
p2 the sign representation, with degrees f; = fo = 1 and p3 with degree
f3 = 2 defined as follows:

p0) =By pal2) = [ % | sy = 0],

w2y = o b ] mam =] ] men=]p 4]

where p = exp(27i/3). The permutation representation can be decom-
posed as P = p1 ®p3. That ism; =1, my = 0 and m3 = 1. By Theorem
4, one can get

Zgo(u)™!
— Zg(u)—l(l _ u2)2(s—m)

x det | Iom — Z A(é(av)) ®p3(7) | u+ (Qe® L)u? |,
v€ES3

where m is the number of vertices of G. Note that S3 is the dihedral
group of order 6. This result can also be obtained from Theorem 9 in
Section 4 later in a different way.

In particular, if G is the diamond graph, i.e., the complete graph K4
minus an edge, then an easy computation gives that

Zo(w) ™ = (1 -4 —u)(1 +u®) (1 +u+ 2u?)(1 - u? — 2u3).
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Consider an S3-voltage assignment ¢ which is defined as in Figure 1.

Ug
(23) (12)
U2 1 u3
1 1
Uy

Figure 1: An S3-voltage assignment ¢ on the diamond graph

Then the covering G? is connected. Moreover,

AGy13))) = A(Gg,023))) = A(Gg,132))) = O

and

01 1 17 0000
= 1000 - 0000
AGen)=|1 ¢ 0 o | ACwam)=|¢ o ¢ 1|
100 0] 0010

[0 0 0 0

- 0001

AlGem =19 ¢ o 0

0100

Thus one can nave
Zoo(u)™ = Zg(u) 11 —u?)?(1 —u —u® + 2u?)
X (1 —u+2u? — ud + 2ut)(1 + u + u® + 2u?)
x(1+u + 2u? + ud + 2ut).
Note that this formula is given in Example 5(3) in [13] with an aid of

Mathematica. However we compute it here with a permutation voltage
assignment.

3. Graph bundles having voltages in an abelian group

In this section, we consider the zeta function of a graph bundle Gx¢F
when the images of ¢ lie in an abelian subgroup I' of Aut(F') and the
graph F is regular. In this case, for any 71,7 € I', the permutation
matrices P(v1) and P(v2) are commutative and Dp = kpl,, where kg
denotes the degree of the graph F.
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It is well-known [2] that every permutation matrix P(y) commutes
with the adjacency matrix A(F) of F for all v € Aut(F). Since the
matrices P(7), v € I', and A(F) are all diagonalizable and commute with
each other, they are simultaneously diagonalizable. That is, there exists
an invertible matrix Mr such that MP_lP(fy)Mp and MF“lA(F)Mp are

diagonal matrices for ally € I'. Let A(, 1, ..., A(y,n) be the eigenvalues of
the permutation matrix P(v) and let A(g1), - - -, A(5n) be the eigenvalues
of the adjacency matrix A(F). Then
A1) 0
M{P(y)Mr = and
0 Alym)
M{rA(F)Mr = Y
0 A(F,n)

Therefore,

(Im ® Mr)~ (Z A(G(q(w)) Q@ P(y) + I, @ A(F) | (I, ® Mr)

~el
A(,1) 0
= Z AG w) )
er 0 A(y,m)
AF1) 0
+Im ® te
0 )‘(F,n)
I —
- @ Z )‘(’Y,i)A(G(qS,'y)) + AEayIm
=1 ~el

and

n

(Im ® Mr) ™ Q6 ® In + I ® Dp)(Im ® Mr) = @)(Qc + krlm)-
' i=1

Thus
det(Imn — (>_ A(G(g,y) ® P(7) + In ® A(F) )u
Y€
+(Qg ® I+ I, ® Dp)u? )
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n

= det (@ (I — (Z Aoy AG (g.)) + Ny Im Ju

i=1 vyer’
"—(QG + kFIm)UQ))a
and then

Zaxor(u)™!
— (1 _ u2)(5—m+T—§E)n

X H det(1,, — (Z A(w,i)A(G—?w,v)) + )\(F,i)Im)u + (Q¢ + kFIm)UQ).
i=1 vyel©

Since the cartesian product G x F of two graphs G and F is the
F-bundle over G associated with the trivial voltage assignment ¢, i.e.,
¢le) = 1 for all e € E(G) and A(G) = A(G), we get the following
corollary.

COROLLARY 8. For any connected graph G and a connected kp-
regular graph F, the reciprocal of the zeta function of the cartesian
product G x F' is

Zaxr(u)™t = (1- u2)(s-m+m—§5)n

x [[ det (Im = (A(G) + Mgy Im)u + (Qq + kpIn)u?)
=1

where |V (G)| =m, |E(G)| = s and |V (F)| = n.
In particular, if G is regular of degree k¢, then the reciprocal of the
zeta function of the cartesian product G x F is

Zoxp(u)™t=(1 - u’é’)(m%k—ﬂ—l)mn

n m
X H H (1= (\Gj) + MNra)u+ (kg + kr — 1)u?),

i=1j=1
where (g j), 1 < j < m, are the eigenvalues of the graph G.

EXAMPLE 2. Let G = F = K3, the complete graph with 3 vertices.
Then Z(K3,u)™! = (1 —u?)2. The eigenvalues of K3 are 2, —1 and —1.
By Corollary 8, we get

Zroxis (W)™ = (1 —u?)°(1 — du+ 3u?) (1 — u + 3u?)*(1 + 2u + 3u?)%.

It is clear that Z(K3,u)™! is not a divisor of Z(K3 x K3,u)~!. This

example says that in general, Zg(u)™! or Zp(u)~! is not necessarily to

be a divisor of Zgxp(u)™L.
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In general, for the complete graph K,,, its eigenvalues are m — 1 with
multiplicity 1 and —1 with multiplicity m — 1. Therefore
ZKnxKn (uz—1
= (1- u2)(%“2)mn(1 —(m+n—-2)u+ (m+n - 3)u?)

X(1—(m~2)u+ (m+n—3pu?)"!
x(1—(n—2)u+ (m+n— 3)u?)m1
x(1+ 2u + (m 4 n — 3)u?)m—D-1),

ExaMPLE 3. Let C,, be the n-cycle. It is known [15] that the eigen-

values of C, are 2cos(27k/n), 0 < k < n — 1. By Corollary 8, we
get

ZmeCn ('Uf)—l
n—1 m-~1
= (1—u®)™ H H (1 — 2(cos(2mky /m) + cos(2mky/n))u + 3u?).
ka=0 k1=0

4. Graph bundles having voltages in a dihedral group

In this section, we compute the zeta function of a graph bundle having
voltages in a dihedral group. Assume that F is kp-regular with n vertices
again and let Aut(F’) contains the dihedral group D,, of order 2n, which
is described below, as a subgroup in addition.

Let S,, denote the symmetric group on V(F). Set V(F) = {1,2,...,
n} for a notational convenience. Let a = (1 2 --- n—1 n) be an
n-cycle and let

_ (1 n)(2 n—1)--- (252 2E3)(2H)  if nis odd,
(1 n)(2n—1)---(% 22 if n is even
be a permutation in S,. Note that the permutations a and b generate
the dihedral subgroup D,, of S,, where
Dp={(a,b|la"=b=1,bab=a"1)={1,qa,...,a" 1, b,ab,...,a" 1b}.

Let 1 = exp(2mi/n) and let xx = (1, %, 12*, ..., u(=V5)T be a col-
umn vector in the complex n-space C*. Then 1, , ..., u" ! are distinct
eigenvalues of the permutation matrix P(a) and xj is an eigenvector of
P(a) belonging to the eigenvalue u* for 0 < k <n — 1. Let P(b) be the
permutation matrix of b and let

. { [Xo X1 P(b)xl X2 P(b)XQ e x(n—l)/2 P(b)X(n_l)/z] ifnis Odd7

[Xo X1 P(b)x1 X2 P(b)XQ s X(n_Q)/g P(b)X(n__g)/g Xn/g] if n is even.
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From P(a)P(b)x=P(ab)xi=P(ba 1 )xp=P(b)P(a 1)xt = p""*P(b)xy,
we know that for any 0 < k < n — 1, P(b)xx is an eigenvector of
P(a) associated with the eigenvalue p"~*. Thus the matrix M is in-
vertible because its column vectors are eigenvectors of P(a) associated
with distinct eigenvalues. Moreover, P(a) and A(F) are commutative
since a € AutF) from the assumption. Thus P(a) and A(F') are si-
multaneously diagonalizable. Note that the columns of M are eigen-
vectors of P(a) associated with distinct eigenvalues, so each column of
M is again an eigenvector of A(F). Since P(b)A(F) = A(F)P(b) for
1<k <(n-1)/2 when n is odd and for 1 < k < (n —2)/2 when n
is even, x; and P(b)xy are eigenvectors of A(F') belonging to the same
eigenvalue, say it Az ). The all-one vector x¢ is an eigenvector of A(F)
belonging to the eigenvalue kg, the degree of the graph F. When n
is even, denote by A(pn/2) the eigenvalue of A(F) associated with the
eigenvector x,,/o. From [8], we know that

(Im® M)~ (Z A(Gp)) ® Py )+Im®A(F)) (I, ® M)

vyeD
(

n—1)/2
(A(G) + kpln) ( @ (A + )\(Ft)Igm)) if n is odd,

t=1

t=1

n—2)/2
(A(G) + kplm) ( @ (Ae + /\(Ft)IZm))

\ ® (B + AFny2)lm) if nis even,

where
2 4 _ni[ WrAG ) HTAG g we) }
t — — —
oo L OTORA(G k) TIRAG (40k))

is a 2m x 2m matrix and
(3) B =3 ((-1)FAG a0 + (-1 AG(g,00))

is an m x m matrix. Again we have

n

(In ® M) HQc ® In + Inn ® Dp){(In ® M) = P (Qc + krlm).
=1
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We denote the 2m x 2m matrix (Q¢ + krlm) ® Iz by Lg. Thus when n
is odd,

det(Imn — (> A(G(4)) ® P(7) + I ® A(F))u
y€Dp
+HQa ® In + Iy ® Dr)u?)

= det(In, — (A(G) + kply)u+ (Qg + krly)u?)

(n—-1)/2
X H det(Igm — (At + /\(F’t)IQm)’U, + LGuz),
t=1

and when n is even,

det(Imn — (> A(G(47) ® P(7) + I ® A(F))u
~YEDp

= det(l, — (A(G) + krL)u+ (Qg + krly)u?)
x det(l,, — (B + )\(pm/g)fm)u + (Qa + kFIm)uz)
(n-2)/2
x [ det(am — (Ai + ApgyJom)u + Lou?).

The following theorem comes from Theorem 3.

THEOREM 9. Let G be a connected graph with m vertices and s
edges, and let F' be a connected kp-regular graph with n vertices such
that Aut(F') contains the dihedral group D,,. Then for any D,-voltage
assignment ¢ on G, the reciprocal of the zeta function of the graph
bundle G x?¢ F is

mkp (n—1)/2
Zaxep(u)™h = (1 - U2)(s‘m+ ? fGF H 96, Fi(u
when n is odd, and

—— (n 2)/2
— s§—m n
Zaxop(u)™h = (1 -’ >V fe,p(whe,F(u H 96, Ft(u
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when n is even, where the polynomials fg r(u), gc rt(u) and hg r(u)
are

for(u) = det(In — (AG) + krln)u+ (Qg + kpln)u?),
gc,ri(u) = det(lym — (Ar+ )\(F’t)fgm)u + LGuQ),
her(u) = det(ly — (B + )‘(F,n/z)Im)u +(Qc + kFIm)ug)-

5. Applications

For a graplk. G with m vertices, let w : E(é) — € be a function on
the set of directed edges of G such that w(e ') = w(e), the complex
conjugate of w(e) for each e € E(G). Such a function w is called a
symmetric weight function on the graph G. Define an m X m matrix

A(G) = (ai)) as
wluug)  if wiu; € E(G),
Qi =—
N 0 otherwise.

Note that A(G.,) is a Hermitian matrix and A(G,) = A(G) when w(e) =
1 for all e € E(G).
For any D, -voltage assignment ¢ on G, define a new Zs-voltage as-
signment 14 on G by
A 1 if¢(e)=af forsome 0 < k<n-—1,
TN 1 #(e) = a*b for some 0 < k <n —1,

—

for e = wju; € E(G). The derived double covering of G by 14 is denoted
by G¥¢. For any ¢, 1 < t < [(n — 1)/2], define a function w:(¢) :
E(G¥¢) — C as follows: for any e = (i, 9)(uj, ¥g(uiu;)g) € E(GY?),
utk if g =1 and (¢(usu;) = a* or a*b),
wt(¢)(e) = (n—t)k . k k
L if g = —1 and (¢(usu;) = a” or a®b),
where p = exp(27i/n). Then w(¢@) is a symmetric weight function on

the graph GVs.
Define another function w_1(¢) : E(G) — C on the graph G by

DR lusuy) = o,
‘”‘l(d’)(“’“])_{ (DR if plusuy) = ab

for uiu; € E(G). Then w_1(¢) is a symmetric weight function on G.
The following lemma was obtained by Kwak and Kwon.
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LEMMA 10. ([8]) Let A; and B be the matrices in Eq (2) and (3),
respectively. Then
(1) for any t = 1,2,...,|[(n — 1)/2], A(Gﬁfw)) = A; as 2m x 2m
matrices under vertex order (uy,1),(uz,1),..., (um, 1), (u1,-1),
(u2,-1),..., (tm,—1), and
(2) if n is even, A(G,,_,(4)) = B as m x m matrices.

Let G = C,, be the m-cycle with consecutive vertices uy, ua, . . . , Um.
The digraph C,, is an edge-disjoint union of two directed cycles Cf =
(u1,u2,y - s Um,u1) and Gy, = (u1,Um, ..., uz,u1). Now, let F' = C,, be

another cycle with vertices v1,vs,...,v, so that Aut(F) = Aut(C,) =
D,. Let ¢ € C(Cp, D,) be a Dp-voltage assignment on Cy,. Define
the net voltage on C;f. by ¢(C;t) = ¢p(urug) - - d(Um—1Um)d(umui). The
graph bundle Cy, x? C,, is called a discrete torus if ¢(C;t) = a* for some
0 < k <n—1and a discrete Klein bottle if $(C;t) = a*b for some
0 < k <n—1. As an application of our formula, we compute the zeta
functions of a discrete torus and of a discrete Klein bottle in this section.

Let Hy(x) = x and Hy(x) = 22 — 1 be polynomials in z and let H;(z)
be a sequence of polynomials satisfying the recurrence relation

Hjyo(z) = 2Hj3a(z) — Hj(z).
Set
(4) Pj(z) = Hj(z) — Hjo(z).
Then a straightforward calculation gives the following lemma.

LEMMA 11. Let w be any symmetric weight function on Cy,. Then
det (Im — (A((Cm)w) + Mm)u + (6Im)u?)

— ™ (Pm (% o (5u) ~ (wich) +E(‘Cf))> ,
where w(C:) = w(uiuz) - - (1t o (Umity ).

Now, we are ready to compute the zeta functions of a discrete torus
and of a discrete Klein bottle. To do this, one needs to compute three
polynomials fe,, ¢, (u), hc,, ¢, (v) and g, ¢, (u) defined in Theorem 9.
For G =C,, and F = C,,, we have kr = 2 and Q¢ + kpl,, = 31,. From
Lemma 11, it is easy to show that

fom,cn(u) =u™ (Pm (% -2+ 3u> - 2> :
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For any even n, since A¢,, /2 = —2, we have by Lemmas 10 and 11

1
h@wxmzum0%<

e |

#243u) 2100 )

where

(-1F i ¢(CF) = aF,

(=D)Fif ¢(CF) = abb

For the polynomial 9Cym,Cn t(u), first note that the eigenvalues of C,
are \(c,,1) = 2 cosz”—t for 1 < ¢ < |25t]. When ¢(C}}) = a* for some

0<k<n-1, Cm is a disjoint union of two copies of Cy, but when
H(CH) = aFb for some 0 < k < n—1, C’;,p{” is the cycle Csy,. By a method
similar as in [8] with Lemmas 10 and 11, one can get

w-1(¢)(C) = {

9Com O, (W)
B um (P,n(l — 2cos 22t 4 3u) — 2cos 2’Ttk)z if p(C) = aF,
2 Py (% — 2cos 22t 2” + 3u) — 2) if p(CF) = a*b

Summarizing our discussions, we have the following theorems.

THEOREM 12. Let a discrete torus Cy, x® C, have the net voltage
(Ct) = o for some 0 < k < n — 1. Then the reciprocal of its zeta
function is

Z¢, xec, ()™

( (1_u2)mn Pm ____2_‘_3,“)_2)

(n—1)/2 2
1 2 2
X H ( = 2cosﬂ+3u)—2cos mk) if n is odd,
u n n
=Y (1 —ut)™mum™ (Pp(: — 2+ 3u) — 2)

X (Pm(} + 2+ 3u) — 2(-1)%)

27rtk)2 L
if n is even,
n

(n=2)/2
2
X (Pm(l—2cosit+3u)—2cos
\ ol u n

1
where Py, (z) is defined in Eq (4).

THEOREM 13. Let a discrete Klein bottle Cp, x® C,, have the net
voltage ¢(C;}) = a*b for some 0 < k < n — 1. Then the reciprocal of its
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zeta function is
Zcm><¢cn (U)
( (1 =)™ (Prp(L — 2+ 3u) ~ 2)

-1

(n=L)/2 1 ot
X H (sz(— — 2cos — + 3u) —2) if n is odd,
=1 U n
) A =)™ (P -2+ 3u) - 2)

X (Pm(L + 2+ 3u) — 2(=1)%+1)

(n—2)/2 1 Ot
X H <P2m——2008—+3 )—2) if n is even,
\ =1

where P, (z) is defined in Eq (4).

References

(1] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3
(1992), no. 6, 717-797.

[2] N. Biggs, Algebraic Graph Theory, 2nd ed., Cambridge University Press, Cam-
bridge, 1993.

[3] J. L. Gross and T. W. Tucker, Generating all graph coverings by permutation
voltage assignments, Discrete Math. 18 (1977), no. 3, 273-283.

[4] K. Hashimoto, Zeta functions of finite graphs and representations of p-adic
groups, Adv. Stud. Pure Math. 15 (1989), 211-280.

[5] Y. Ihara, On discrete subgroups of the two by two projective linear group over
p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.

[6] J. H. Kwak and J. Lee, Isomorphism classes of graph bundles, Canad. J. Math.
42 (1990), no. 4, 747-761.

, Characteristic polynomials of some graph bundles II, Linear and Multi-
linear Algebra 32 (1992), no. 1, 61-73.

[8] J. H. Kwak and Y. S. Kwon, Characteristic polynomials of graph bundles having
voltages in a dihedral group, Linear Algebra Appl. 336 (2001), 99-118.

[9] H. Mizuno and L. Sato, Zeta functions of graph coverings, J. Combin. Theory
Ser. B 80 (2000), no. 2, 247-257.

, L-functions for images of graph coverings by some operations, Discrete
Math. 256 (2002), no. 1-2, 335-347.

{11] S. Northshield, A note on the zeta function of a graph, J. Combin. Theory Ser.
B 74 (1998), no. 2, 408-410.

[12] J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathe-
matics, Vol. 42, Springer-Verlag, New York, 1977.

[13] H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, Adv.
Math. 121 (1996), no. 1, 124-165.

[14] T. Sunada, L-functions in geometry and some applications, Lecture Notes in
Mathematics, Vol. 1201, 266-284, Springer-Verlag, New York, 1986.

10}




Zeta functions of graph bundles 1287

[15] A. Terras, Fourier Analysis on Finite Groups and Applications, London Math-
ematical Society Student Texts, 43, Cambridge University Press, Cambridge,
1999.

Rongquan Feng

LMAM, School of Mathematical Sciences
Peking University

Beijing 100871, P. R. China

E-mail: fengrq@math.pku.edu.cn

Jin Ho Kwak

Department of Mathematics

Pohang University of Science and Technology
Pohang 790-784, Korea

E-mail: jinkwak@postech.ac.kr



