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GOTTLIEB GROUPS ON LENS SPACES

J. Pax* AND Moo HA Woo**

ABSTRACT. In this paper we compute Gottlieb groups for general-
ized lens spaces. Then we apply this result to compute Gottlieb
groups for total spaces of a principal torus bundle over a lens space.

1. Introduction

The Gottlieb group, G,(X), of a connected topological space X
consists of all @ € 7,(X, ) such that there is an associated map
A: 8" x X — X and a homotopy commutative diagram

Shxx A X

+ S aVilx
S*v X

This group Gy (X) is also characterized by Gn(X) = wg(mn(XX,1x)) C
(X, Zo), where w : XX — X is an evaluation map at g € X. Thus
Gn(X) is also called an evaluation subgroup of m,(X,zo) .

Gottlieb extensively studied G1(X) in [1], and Go(X) for n > 2 in
[2]. He has shown that if X is an H-space , then Gp(X) = mn(X, zo)
for all n. He also computes G,(X) when X is an n-dimensional sphere
S™;

0, for n even
G.(SM=<{ Z, forn=1,3,7
2Z, fornodd andn #1,3,7.
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Recently, Lee, Kim and Woo [3,5] introduced the notion of gener-
alized evaluation subgroups and G-sequences and made some improve-
ment on computing the evaluation subgroups.

The purpose of this paper is to give a computation of Ga,,41(X) when

X is a (2n 4 1)-dimensional generalized lens space Lon+1(P; g1, ,qn)
as follows
THEOREM. Let Lon11(p;q1, -+ ,qn) be a (2n + 1)-dimensional gen-

eralized lens space. Then we have

Z, forn=0,1,3,

Gant1(Lon+1(p3 1, 5 qn)) = { 97, for any other n.

For n = 0, we have L;(p) ~ S* and G1(L1(p)) = G1(S?) = m (S?) ~
Z follows easily since S* is a compact Lie group.

For n = 1, we have a 3-dimensional lens space L3(p; q) and the result
follows from the following corollary of George Lang Jr. [4]. Let Y be
a Lie group, G a finite subgroup of Y. Then G,(Y/G) = m.(Y/G) for
n > 1. Here we take Y = S$3, a compact Lie group and G = Z,(g) to
be a cyclic subgroup of order p of S3. Then S%/Z,(g) = L3(p;q) and
Lang’s corollary implies G3(L3(p;q)) = m3(L3(p;q)) ~ Z.

In the next section, we first show that G7(L7(p; q1,42,93)) = Z and
then we prove the general case, that is, Gont+1(Lon+1(0; 01, -+ ,qn)) =
27.

Before proving our theorem we would like to introduce lens space for
reader’s convenience.

Let $?"*1 be a (2n+1)-dimensional unit sphere in Euclidean (2n+2)-
space defined in terms of (.+1) complex coordinates z = (29, 21, -+ , 2n)
satisfying 20%p + -+ + 22, = 1. Let p > 2 be a fixed integer, and
g1, "+ ,qn be n integers relatively prime to p. We define an action o on
S2ntl by alg, (20,21, - y2n)) = (e2wi/p20,e2wiq1/pzl,... ,627"7:Qn/pzn)_
Then g generates a fixed point free cyclic group Z,(g) of rotations of
8§2n+1 of order p. The orbit space 2741/ Z(9) = Lan+1(D; 91, ,qn)
is an orientable (2n + 1)-dimensional manifold called a lens space. Let
Lont1(piqi,++ 1qn) = Lonta(p;q), where q = (g1, ,qn). If 7 :
S§2n+1 — Lon+1(p;q) is a projection map and ¢* € Z,(g), then mg'(2) =
n(z) for z € §?**! and | = 1,---,p. Thus Zp(g) is a group of deck
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transformations since 7 is a covering map, and we have 71 (Lan+1(p; Q))
~ Z,(g) and 7;(Lant1(p; @) = m:(S?*1) for i > 2.

Topological classifications are given as follows: Two lens spaces
Lon+1(P; q1,-,x) and Lon41(p; 41, -,4y,) are homeomorphic if and only
if there is a number b and there are numbers ¢; € {—1,1} such that a
(q1,--- ,qn) is a permutation of (e1bqj, - - - €xbg;,) mod p.

Homotopy classifications are given as follows: Two lens spaces Lan+1
(p;q1,.,qn) and Lont1(p; g1, -, ¢,) have the same homotopy type if and
only if qig2 -+ - gn = £k™g{q} - - - ¢}, for some integer k relatively prime
to p. Thus L3(5,1) is not homotopic to L3(5,2) while they have the
same homotopy groups.

Since Lon+1(P; q1,-qn) and Lant+1(p; 41, -, 4;,) have the same homo-
topy groups and our proof of Theorem 3.1 shows that Gant1(Lon+1(p;
q1,.,qn)) is independent of (gi,.,qn), We simply write Loni1(p) for

Lon+1(p; q15 -, qn)-
For more information on lens spaces readers are referred to [6,7].

2. Proof of Theorem

In order to prove our theorem we need following two lemmas from
[2].

LEMMA 2.1. Let p: X — X be a covering map. If k > 1, then
pz (Gk(X)) C Gi(X). In other works, if we identify mx(X) with me(X)
under the isomorphism py, then G(X) C Gir(X).

Thus it follows that Gap41(Lon+1(p)) € Z for n =0,1,3 and Gon4a
(Lon+1({p)) C 2Z for other n.

LEMMA 2.2. For any fibration F —— E - B, d(mn41(B)) C
G.(F) where d : mp11(B) — m,(F) arises from the homotopy exact
sequence of the fibration.

Proof of theorem. For the cases of n = 0 and n = 1 are given in the
introduction. Next we show G7(L7(p)) ~ Z. We already know that
G7(L7(p)) C Z from lemma 2.1 since S7 is a universal covering space
of L7(p). Thus all we need to show is that G7(Lz(p)) 2 Z. Steenrod
constructs a fiber bundles S5 over S® with S7 as fiber with bundle
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group O(8) in [11,20.6]. Then we have Z,(g) C SO(8) C O(8), where
Zyp(g) is a cyclic group of order p acting freely on S7 and so does act
freely on S'° as well. Then their orbit spaces are L7(p) and Lis(p)
respectively and we have {L15(p), 7, 5%} as a fiber space with L+(p) as
fiber. It gives us a fiber homotopy exact sequence

— 7g(L15(p)) 5 m5(S8) 2 mr(La(p)) ~2 mr(Lys(p)) —

and gives us 0 — Z 2,z 0. Here 0 becomes an isomorphism
and it follows Z = 9(Z) C G7(L7(p)) from Lemma 2.2. Thus we have
G7(L7(p)) ~ Z.

Now we prove Gopt1(Lan+1(p)) =~ 2Z for n # 0,1, 3. Let us consider
the Stiefel manifold Vap,132. It may be interpreted as the space of unit
tangent vectors on S22 (11]. Then V5,432 may be considered as the
tangent bundle over S22 with fiber §2nt1 = Van42,1 with bundle
group of SO(2n +2). ThenZ,(g) C SO(2n +2), a cyclic group of order
p acts freely on $2**! and does act freely on V2,132 as well. This
action induces a fibration

Lons1(p) = 81/ Z,(g) — Vanta2/Zy(g) = S7n+2

and induces the following fiber homotopy exact sequence
o i
— 7T2n+2(V2n+3,2/Zp(g)) %, 7r2n+2(52n+2) — Ton+1(Lont1(p)) -

T2n+1 (V2n+3,2/Zp(g)) 0.

Note that V3,432 is a p-fold covering space over Vany32/Z,(g) and we
have

7r2n+1(V2n+3,2) & 7r2n+1(V2n+3,2/Zp(g)) ~ Zy [11, 25.6).
Then the fiber homotopy exact sequence gives us
—z-2z7%, 7, ™.
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Since i¢4 is an epimorphism, exactness of the sequence implies that
the image of 0 is a subgroup of mon+1(Lon+1(p)) ~ Z of index 2.
Hence we obtain 8(uan+2) = 2ugn+t1, where ug,+2 and ug,y; are gen-
erators of mo,42(S?"*?) and mon+1(Lant1(p)) respectively. Then we
have 0m2n12(S*"*?) C Gont1(Lons1(p)) by Lemma 2.3. Thus we
have 2Z C Gani1(Lont1(p)) C Gon1(S?" 1Y) ~ 2Z and we conclude
G2n+1(L2n+1(p)) =27 forn 75 0,1,3. g

COROLLARY 2.3. If p = 2 in our theorem, we have Lz, 1(2) =
RP(2n + 1), (2n+ 1)-dimensional real projective space, and

Z, forn=0,1,3

Gon+1(RP(2n+ 1)) =
2n+1(RP(2n + 1)) {2Z, for any other n.

This corollary is a part of Theorem 3.4 given in [10], and we have
Gan(RP(2n)) = 0 for n even [10]. ’

REMARK. Let H be a finite group acting freely on $%**!. Then
the orbit space S2"*!/H is called a spherical orbit space. Thus a lens
space is a special case of a spherical orbit space. Recently, Oprea [8]
has shown that G;(S?"*t!/H) = Z(H), the center of H. It will be an
interesting problem to find out what is Ga,41(S?"t!/H). Note that
from lemma 1 we know that Gony1(S?*+1/H) C Z for n = 1,3 and
Gon+1(S*"t1/H) C 2Z for other n's. We suspect that the equality
hold for both cases. For n = 0, H must be a finite cyclic subgroup
of S! and S'/H ~ S! and G,(S'/H) = m(S8*) = Z. For n = 1,
and if H is a finite cyclic or a finite binary polyhedral group , then the
result follows from the Lang Jt’s corollary which says that G,,(S3/H) =
7o (S3/H) = m,(S%) for n > 1.

Let {E,7,CP(n)} be a principal circle bundle over 2n-dimensional
complex projective space CP(n). The bundle classifications are given
by [CP(n),CP(x)] = H2(CP(n);Z) ~ Z. The topological classifi-
cations are given by E =~ CP(n) x §! for 0 € Z and F = §?*1!
for £1 € Z for two extreme cases. For other cases we have £ =
Lop+1(lil;1,---,1) = Lont1(li]), (2n + 1)-dimensional lens space for
teZ.
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COROLLARY 2.4. Let i # 0 be an integer and E = Loy 41(}i];1
1)). Then we have

sy

Z, forn=0,1,3
Goni1(E) = ’ IR
zn41(E) { 27, for all other n.

Fori =0 € Z, we have
G2n+1(CP(n) X Sl) = G2n+1(C’P(n)) 2 n!Z.

The first part follows from our theorem and the second part follows
from [4].

Let M™*1 be a total space of a principal torus 7"~2 bundle over a
lens space L3(p;q), n-> 3.

COROLLARY 2.5.

Go(M™ ) = Zy® 22 fori=1
‘ ~ \ mi(Ls(k,q)), otherwise

for some positive integer k < p.

Proof. It is known that the total space M™*! must be L3(k,q) x
T™2 for some positive integer k < p [9]. Then for i = 1 we have
Gi(La(k;q) x T*%) = Gi1(Ls(k; ) & G1(T™?) = Zx & Z"~2. For
other i's we have G;(Ls(k;q) x T"2) = G;(Lz(k;q)) ® Gs(T"?) =
Gi(Ls(k; q)) = mi(Ls(k; q))- a
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