ON THE STRUCTURE OF NON-COMMUTATIVE TORI

DEOK-HOON BOO AND WON-GIL PARK

ABSTRACT. The non-commutative torus $A_{\omega} = C^*(\mathbb{Z}^n, \omega)$ may be realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\widehat{S_{\omega}}$ with fibres $C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$ for some totally skew multiplier ω_1 on \mathbb{Z}^n/S_{ω} . It is shown that $A_{\omega} \otimes M_l(\mathbb{C})$ has the trivial bundle structure if and only if \mathbb{Z}^n/S_{ω} is torsion-free.

1. Introduction

Given a locally compact abelian group G and a multiplier ω on G, one can associate to them the twisted group C^* -algebra $C^*(G,\omega)$, which is the universal object for unitary ω -representations of G. Our problem is to understand the structure, especially the bundle structure, of such C^* -algebras. The twisted group C^* -algebra $C^*(G,\omega)$ of a finitely generated discrete torsion-free abelian group G defined by a multiplier ω is called a *non-commutative torus* and is denoted by A_{ω} . It is a fundamental and an important example in non-commutative differential geometry [3].

The simplest non-trivial non-commutative tori arise when $G = \mathbb{Z}^2$. In this case we may assume ω is antisymmetric and $\omega((1,0),(0,1)) = e^{\pi i\theta}$. When θ is irrational, one obtains a simple C^* -algebra called an irrational rotation algebra, and denoted by A_{θ} . When $\theta = \frac{m}{k}$, one obtains a rational rotation algebra, and denoted by $A_{\frac{m}{k}}$.

Received by the editors on April 25, 2000.

¹⁹⁹¹ Mathematics Subject Classifications: Primary 46L87, 46L05 Secondary 55R15.

Key words and phrases: twisted group C^* -algebra, tensor product, crossed product, K-theory, C^* -algebra bundle.

Now the multiplier ω determines a subgroup S_{ω} of G, called its symmetry group. A multiplier ω on an abelian group G is called totally skew if the symmetry group S_{ω} is trivial. Baggett and Kleppner [1] showed that if G is a locally compact abelian group and ω is a totally skew multiplier on G, then $C^*(G, \omega)$ is a simple C^* -algebra. So $C^*(\mathbb{Z}^n, \omega)$ is simple if ω is totally skew.

Baggett and Kleppner [1] also showed that even when ω is not totally skew on a locally compact abelian group G, the restriction of ω -representations from G to S_{ω} induces a canonical homeomorphism of $\operatorname{Prim}(C^*(G,\omega))$ with \widehat{S}_{ω} . It was shown in [1] that there is a totally skew multiplier ω_1 on \mathbb{Z}^n/S_{ω} such that ω is similar to the pull-back of ω_1 . Furthermore, it is known (see [1, 5, 7, 10, 12]) that $C^*(G,\omega)$ may be realized as the C^* -algebra $\Gamma(\zeta)$ of sections of a locally trivial C^* -algebra bundle ζ over $\widehat{S}_{\omega} = \operatorname{Prim}(C^*(G,\omega))$ with fibres $C^*(G,\omega)/x$ for $x \in \operatorname{Prim}(C^*(G,\omega))$ and all $C^*(G,\omega)/x$ turn out to be the simple twisted group C^* -algebra $C^*(G/S_{\omega},\omega_1)$.

A natural question is when the locally trivial bundle ζ is trivial. Brabanter [2] proved that the rational rotation algebra $A_{\frac{m}{k}}$ has a nontrivial bundle structure and that $A_{\frac{m}{k}} \otimes \mathcal{K}(\mathcal{H})$ has the trivial bundle structure.

Poguntke showed in [11] that any primitive quotient of the group C^* -algebra $C^*(G)$ of a locally compact two step nilpotent group G is isomorphic to the tensor product of a completely irrational non-commutative torus A_{φ} and $\mathcal{K}(\mathcal{H})$ for some (possibly finite-dimensional) Hilbert space \mathcal{H} . Since $C^*(G/S_{\omega}, \omega_1)$ is the primitive quotient of $C^*(G/S_{\omega}(\omega_1))$ where $G/S_{\omega}(\omega_1)$ is the extension group of G/S_{ω} by \mathbb{T} defined by ω_1 , $C^*(G/S_{\omega}, \omega_1)$ is isomorphic to $A_{\varphi} \otimes \mathcal{K}(\mathcal{H})$.

In this paper, we investigate the structure of the fibre of A_{ω} . By a result of Poguntke we have a decomposition of the fibre of A_{ω} as the

tensor product of a completely irrational non-commutative torus A_{φ} with a matrix algebra $M_k(\mathbb{C})$. So A_{ω} is isomorphic to the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\widehat{S_{\omega}}$ with fibres $A_{\varphi} \otimes M_k(\mathbb{C})$. We are going to show that $A_{\omega} \otimes M_l(\mathbb{C})$ has a non-trivial bundle structure if and only if k > 1.

2. Preliminaries

Let G be a locally compact abelian group, ω a multiplier on G. Denote by $C^*(G, \omega)$ the twisted group C^* -algebra of G defined by ω , which is the universal object for unitary ω -representations of G. A non-commutative torus A_{ω} of rank n is the twisted group C^* -algebra $C^*(\mathbb{Z}^n, \omega)$ of \mathbb{Z}^n defined by a multiplier ω . To fix notations, let

 \mathbb{Z} = the set of integers,

 \mathbb{C} = the set of complex numbers,

 \otimes = the minimal tensor product.

We start our investigations with a study of decomposition of multipliers on \mathbb{Z}^n/S_{ω} . If ω is a multiplier on G and H a closed subgroup of G, then we denote by $\omega|_H$ the restriction of ω to H. Furthermore, if $G = G_1 \oplus G_2$, and if ω_1 and ω_2 are multipliers on G_1 and G_2 , respectively, then we denote by $\omega_1 \oplus \omega_2$ the multiplier on G defined by

$$(\omega_1 \oplus \omega_2)((x_1, x_2), (y_1, y_2)) = \omega_1(x_1, y_1)\omega_2(x_2, y_2),$$

 $x_1, y_1 \in G_1 \text{ and } x_2, y_2 \in G_2.$

For some groups G, each multiplier on G turns out to be a bicharacter.

2.1 Proposition. ([8, Theorem 7.1.]) Let G be a finitely generated discrete abelian group. Then every multiplier on G is similar to a bicharacter.

Let ω be a multiplier on a locally compact abelian group G. Define a homomorphism $h_{\omega}: G \to \widehat{G}$ by $h_{\omega}(x)(y) = \omega(x,y)\omega(y,x)^{-1}, x,y \in G$ and let $S_{\omega}:=\ker(h_{\omega})$ denote the symmetry group of ω .

2.2 DEFINITION. The non-commutative torus A_{ω} of rank n is said to be a *completely irrational non-commutative torus* if $S_{\omega} \cong \{0\}$.

Next we introduce the concept of C^* -algebra bundle over a locally compact Hausdorff space. A multiplier ω on an abelian group G is called totally skew if the symmetry group S_{ω} is trivial. Let $\operatorname{Prim}(C^*(G,\omega))$ be the primitive ideal space of the twisted group C^* -algebra $C^*(G,\omega)$ of a locally compact abelian group G defined by a multiplier ω .

- 2.3 Proposition. ([1, 7]) Let G be a locally compact abelian group and ω a multiplier on G. Then
 - i) there is a multiplier ω_1 on G/S_{ω} such that $C^*(G, \omega)/P$ is isomorphic to $C^*(G/S_{\omega}, \omega_1)$ for any $P \in \text{Prim}(C^*(G, \omega))$ and ω is similar to the pull-back of a totally skew multiplier ω_1 ;
 - ii) the restriction of ω -representations from G to S_{ω} induces a canonical homeomorphism of $\operatorname{Prim}(C^*(G,\omega))$ with $\widehat{S_{\omega}}$.
- 2.4 THEOREM. ([10]) Let A be a C^* -algebra and T a locally compact Hausdorff space. Then A is isomorphic to the C^* -algebra of sections of a C^* -algebra bundle over T if and only if there is a continuous open surjection of Prim(A) onto T.

Here the C^* -algebra bundle is not necessarily locally trivial.

By a trick similar to the proof of [5, Theorem 1], one can show that for a multiplier ω on a locally compact abelian group G, $C^*(G, \omega)$ can be realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle. That is, if A is a twisted group C^* -algebra of a locally compact abelian group, its C^* -algebra bundle is locally trivial.

In particular, $A_{\omega} \cong C^*(\mathbb{Z}^n, \omega)$ may be represented as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over \widehat{S}_{ω} with fibres $C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$. See [5, Theorem 1] for details.

A problem then is to decide when this locally trivial bundle is actually trivial. Brabanter [2] proved that the rational rotation algebra has a non-trivial bundle structure. We will present a new proof of this result in the next section.

Let G be a finitely generated discrete abelian group, e.g., \mathbb{Z}^n/S_ω , ω_1 a totally skew multiplier on G, and T the maximal torsion subgroup of G. Then $G \cong T \oplus F$ where F is a torsion-free subgroup. Note that $\omega_1|_F$ is always totally skew, but $\omega_1|_T$ need not be totally skew. A multiplier ω on a group G is said to be $type\ I$ if $C^*(G,\omega)$ is a type I C^* -algebra.

2.5 Lemma ([5, Lemma 1.]) Let ω be a multiplier on a locally compact abelian group G. Suppose G has a closed subgroup H such that $\omega|_H$ is totally skew and type I, and such that the group extension

$$\{0\} \longrightarrow H \longrightarrow G \longrightarrow G/H \longrightarrow \{0\}$$

splits. Then there is a complement L to H in G such that (after replacing ω by a similar multiplier) ω splits as $\omega|_H \oplus \omega|_L$.

3. The bundle structure of non-commutative tori

Let A_{ω} be a non-commutative torus of rank n. A_{ω} is isomorphic to the C^* -algebra of sections of a locally trivial C^* -algebra bundle over \widehat{S}_{ω} with fibres the simple twisted group C^* -algebra $C^*(\mathbb{Z}^n/S_{\omega},\omega_1)$ of a finitely generated discrete abelian group \mathbb{Z}^n/S_{ω} defined by a totally skew multiplier ω_1 on \mathbb{Z}^n/S_{ω} . Here ω is similar to the pull-back of ω_1 . Then $\mathbb{Z}^n/S_{\omega} \cong T \oplus F$ where T is the maximal torsion subgroup of \mathbb{Z}^n/S_{ω} and F is a maximal torsion-free subgroup of \mathbb{Z}^n/S_{ω} .

Assume T is trivial. Then by Lemma 2.5, after replacing ω_1 by a similar multiplier, we may write $\mathbb{Z}^n/S_\omega = F$ and $\omega_1 = \omega_1|_F$. Let \tilde{F} be the pull-back of F under the canonical map of \mathbb{Z}^n to \mathbb{Z}^n/S_ω . Then there is a subgroup F' such that $\tilde{F} = F' \oplus S_\omega \cong \mathbb{Z}^n$. And so $C^*(\mathbb{Z}^n, \omega) \cong C^*(\tilde{F}, \omega|_{\tilde{F}}) \cong C^*(F', \omega|_{F'}) \otimes C^*(S_\omega) \cong C^*(F, \omega_1|_F) \otimes C^*(S_\omega) \cong C^*(\mathbb{Z}^n/S_\omega, \omega_1) \otimes C^*(S_\omega)$. This implies that if \mathbb{Z}^n/S_ω is torsion-free, then the non-commutative torus A_ω has the trivial bundle structure.

3.1 THEOREM. ([6, Theorem 2.2.]) Let $A_{\omega} = C^*(u_1, \ldots, u_n)$ be a non-commutative torus of rank n, where $u_1, \ldots u_n$ are unitary generators satisfying the commutation relations $u_i u_j u_i^{-1} u_j^{-1} = \exp(2\pi i \theta_{ij})$ (here θ is a skew-symmetric $n \times n$ matrix with real entries). Then $K_0(A_{\omega}) \cong K_1(A_{\omega}) \cong \mathbb{Z}^{2^{n-1}}$, and $[1_{A_{\omega}}] \in K_0(A_{\omega})$ is primitive.

Proof. The proof is by induction on n. If n=1, $A_{\omega}=C(S^1)$ is abelian, and the result is obvious. So assume that the result is true for all non-commutative tori of rank n-1. Write $A_{\omega}=C^*(B,u_n)$, where $B=C^*(u_1,\ldots,u_{n-1})$. Then the inductive hypothesis applies to B. Also, we can think of A_{ω} as the crossed product of B by an action α of \mathbb{Z} , where the generator of \mathbb{Z} corresponds to u_n and acts on B by conjugation (sending u_j to $u_n u_j u_n^{-1} = \lambda_j u_j$, $\lambda_j = \exp(2\pi i \theta_{nj})$). Note that this action is homotopic to the trivial action, since we can homotope θ_{nj} to 0. Hence \mathbb{Z} acts trivially on the K-theory of B. The Pimsner-Voiculescu exact sequence for a crossed product gives

$$K_0(B) \xrightarrow{1-\alpha_*} K_0(B) \xrightarrow{\Phi} K_0(A_\omega) \to K_1(B) \xrightarrow{1-\alpha_*} K_1(B)$$

and similarly for K_1 , where the map Φ is induced by inclusion. Since $\alpha_* = 1$ and since the K-groups of B are free abelian, this reduces a split short exact sequence

$$\{0\} \to K_0(B) \xrightarrow{\Phi} K_0(A_\omega) \to K_1(B) \to \{0\}$$

and similarly for K_1 . So $K_j(A_\omega)$ is free abelian of rank $2 \cdot 2^{n-2} = 2^{n-1}$. Furthermore, since the inclusion $B \to A_\omega$ sends 1_B to 1_{A_ω} , $[1_{A_\omega}]$ is the image of $[1_B]$, which is primitive in $K_0(B)$ by inductive hypothesis. Hence the image is primitive, since the Pimsner-Voiculescu exact sequence is a split short exact sequence of torsion-free groups.

Now we investigate the structure of the fibre $C^*(\mathbb{Z}^n/S_{\omega},\omega_1)$ of $C^*(\mathbb{Z}^n,\omega)$.

Let G be a compactly generated locally compact abelian group and ω_1 a totally skew multiplier on G. Then let $E := G(\omega_1)$ be the extension group of G by \mathbb{T}^1 defined by ω_1 . The following result of Poguntke clarifies the structure of the fibres of A_{ω} .

3.2 THEOREM. ([11, Theorem 1.]) Let G be a compactly generated locally compact abelian group and ω_1 a totally skew multiplier on G. Let K be the maximal compact subgroup of E and let E_{ρ} be the stabilizer of an irreducible unitary representation ρ of K restricting on \mathbb{T}^1 to the identity. Then

$$C^*(G, \omega_1) \cong C^*(E_{\rho}/K, m) \otimes \mathcal{K}(\mathcal{L}^2(E/E_{\rho})) \otimes M_{\dim(\rho)}(\mathbb{C}),$$

where m is the associated Mackey obstruction.

This theorem is applied to understand the structure of the twisted group C^* -algebra $C^*(\mathbb{Z}^n/S_\omega, \omega_1)$. Let $G = \mathbb{Z}^n/S_\omega$, $E = (\mathbb{Z}^n/S_\omega)(\omega_1)$, and let E_ρ be the stabilizer of an irreducible unitary representation ρ of the extension $K := T(\omega_1|_T)$ of T by \mathbb{T}^1 defined by $\omega_1|_T$, which restricts to the identity on \mathbb{T}^1 . The Mackey method says that $C^*(\mathbb{Z}^n/S_\omega, \omega_1) \cong C^*(F \oplus T, \omega_1)$ is isomorphic to the primitive quotient of $C^*(E)$ lying over ρ . Then by Theorem 3.2,

$$C^*(\mathbb{Z}^n/S_\omega, \omega_1) \cong C^*(E_\rho/K, m) \otimes \mathcal{K}(\mathcal{L}^2(E/E_\rho)) \otimes M_{\dim(\rho)}(\mathbb{C}).$$

Now by definition, E_{ρ} is of index $|S_{\omega_1|_T}|$ in E, where $S_{\omega_1|_T}$ is the symmetry group, a subgroup of T, of $\omega_1|_T$. So

$$[E: E_{\rho}] = \#$$
 of irreducible $\omega_1|_T$ -representations of T
= $|S_{\omega_1|_T}|_T$

and $\dim(\rho) = \sqrt{|T|/|S_{\omega_1|_T}|}$. And E_ρ/K is a subgroup of finite index $[E:E_\rho]$ in E/K. Let F_ρ be the isomorphic image of E_ρ/K under the natural map of E/K to F. Then the $\{x \in F \mid h_{\omega_1}(x)(y) = 1, \forall y \in S_{\omega_1|_T}\}$ is exactly the F_ρ , and F_ρ is a subgroup of finite index $[E:E_\rho]$ in F. Let $J_F = F/F_\rho, J = J_F \oplus S_{\omega_1|_T}$, and $T_t = T/S_{\omega_1|_T}$. Then $|J_F| = |S_{\omega_1|_T}|$. Since F_ρ is a subgroup of F, we can consider $J_F \oplus S_{\omega_1|_T}$ as a subgroup of $(F \oplus T)/F_\rho$. So $(\mathbb{Z}^n/S_\omega)/F_\rho$ is isomorphic to $J_F \oplus T$ and $((\mathbb{Z}^n/S_\omega)/F_\rho)/J$ is isomorphic to T_t .

Next, we show that $C^*(E_{\rho}/K, m)$ is isomorphic to $C^*(F_{\rho}, \omega_1|_{F_{\rho}})$. By Theorem 3.2, $C^*(F_{\rho}, \omega_1|_{F_{\rho}}) \cong C^*(F_{\rho}(\omega_1|_{F_{\rho}})/\mathbb{T}^1, m_1)$, where m_1 is the associated Mackey obstruction. Let ω_2 be a totally skew multiplier on T_t whose pull-back to T is similar to $\omega_1|_T$. It is enough to show that the Mackey obstruction m_2 , in the isomorphism

$$C^*(F_{\rho} \oplus T_t, \, \omega_1|_{F_{\rho}} \oplus \omega_2)$$

$$\cong C^*((F_{\rho} \oplus T_t)(\omega_1|_{F_{\rho}} \oplus \omega_2)/T_t(\omega_2), \, m_2) \otimes C^*(T_t, \omega_2)$$

$$\cong C^*(F_{\rho}, \, \omega_1|_{F_{\rho}}) \otimes C^*(T_t, \, \omega_2),$$

is essentially the same as m_1 . But for $h \in F_{\rho}$, the unitary operators E'_h in [4, XII.1.17] are the same for F_{ρ} and for $F_{\rho} \oplus T_t$ up to scalar. They give the same Mackey obstructions. So

$$C^*((F_{\rho} \oplus T_t)(\omega_1|_{F_{\rho}} \oplus \omega_2)/T_t(\omega_2), m_2) \cong C^*(F_{\rho}(\omega_1|_{F_{\rho}})/\mathbb{T}^1, m_1)$$
$$\cong C^*(F_{\rho}, \omega_1|_{F_{\rho}}).$$

And $C^*(E_{\rho}/K, m)$ is isomorphic to $C^*(F_{\rho}, \omega_1|_{F_{\rho}})$.

3.3 COROLLARY. $C^*(\mathbb{Z}^n/S_\omega, \omega_1) \cong C^*(F_\rho, \omega_1|_{F_\rho}) \otimes M_{[E:E_\rho]}(\mathbb{C}) \otimes M_{\dim(\rho)}(\mathbb{C}).$

Proof. By Theorem 3.2,

$$C^*(\mathbb{Z}^n/S_{\omega}, \omega_1) \cong C^*(E_{\rho}/K, m) \otimes \mathcal{K}(\mathcal{L}^2(E/E_{\rho})) \otimes M_{\dim(\rho)}(\mathbb{C})$$

$$\cong C^*(F_{\rho}, \omega_1|_{F_{\rho}}) \otimes M_{[E:E_{\rho}]}(\mathbb{C}) \otimes M_{\dim(\rho)}(\mathbb{C}).$$

Here $M_{[E:E_{\rho}]}(\mathbb{C}) \cong M_{|J_F|}(\mathbb{C})$ and $M_{\dim(\rho)}(\mathbb{C}) \cong M_{\sqrt{|T_t|}}(\mathbb{C})$. Hence one obtains the result.

Note that $C^*(F_{\rho}, \omega_1|_{F_{\rho}})$ is a completely irrational non-commutative torus.

Let A_{ω} be a non-commutative torus. It follows from Corollary 3.3 that A_{ω} is isomorphic to the C^* -algebra $\Gamma(\eta)$ of sections of a locally trivial C^* -algebra bundle η over $\widehat{S_{\omega}}$ with fibres $C^*(F_{\rho}, \omega_1|_{F_{\rho}}) \otimes M_{[E:E_{\rho}]}(\mathbb{C}) \otimes M_{\dim(\rho)}(\mathbb{C})$.

We are now ready to prove the main result.

3.4 THEOREM. Let l be a positive integer. Then $A_{\omega} \otimes M_{l}(\mathbb{C})$ is not isomorphic to $A \otimes M_{kl}(\mathbb{C})$ for any C^* -algebra A if $k \neq 1$.

Proof. Assume that $A_{\omega} \otimes M_{l}(\mathbb{C})$ is isomorphic to $A \otimes M_{kl}(\mathbb{C})$ for some integer k and some C^{*} -algebra A. Then the unit $1_{A_{\omega}} \otimes I_{l}$ in $A_{\omega} \otimes M_{l}(\mathbb{C})$ maps to the unit $1_{A} \otimes I_{kl}$ where I_{d} denotes the $d \times d$ identity matrix. Let $J_{kl,i}$ be the $kl \times kl$ matrix with all components 0 except for the (i,i)-component 1. Then the $1_{A} \otimes J_{kl,i}$ are projections in $A \otimes M_{kl}(\mathbb{C})$ such that $1_{A} \otimes J_{kl,i} \sim 1_{A} \otimes J_{kl,j}$ for all $i,j, (1_{A} \otimes J_{kl,i})(1_{A} \otimes J_{kl,j}) = 0$ for all i,j with $i \neq j$, and $\sum_{i=1}^{kl} 1_{A} \otimes J_{kl,i} = 1_{A} \otimes I_{kl}$. By assumption, there are corresponding projections p_{i} in $A_{\omega} \otimes M_{l}(\mathbb{C})$ such that $p_{i} \sim p_{j}$ for all $i,j,p_{i}p_{j} = 0$ for all i,j with $i \neq j$, and $\sum_{i=1}^{kl} p_{i} = 1_{A_{\omega}} \otimes I_{l}$. So

$$[1_{A_{\omega}} \otimes I_l] = [\sum_{i=1}^{kl} p_i] = \sum_{i=1}^{kl} [p_i] = kl[p_1].$$

On the other hand, $[1_{A_{\omega}} \otimes I_l] = l[1_{A_{\omega}}]$. So

$$l[1_{A_{\omega}}] = kl[p_1].$$

But by Theorem 3.1 the K-groups of A_{ω} are torsion-free, so $[1_{A_{\omega}}] = k[p_1]$, which contradicts Theorem 3.1 if $k \neq 1$.

Therefore, $A_{\omega} \otimes M_l(\mathbb{C})$ is not isomorphic to $A \otimes M_{kl}(\mathbb{C})$ for any C^* -algebra A if $k \neq 1$.

In particular, one obtains that no non-trivial matrix algebra can be factored out of any rational rotation algebra $A_{\frac{m}{k}}$. So every rational rotation algebra has a non-trivial bundle structure. This gives an alternative proof of a result of Brabanter.

Theorem 3.4 implies that if $A_{\omega} \otimes M_p(\mathbb{C})$ is isomorphic to $A_{\rho} \otimes M_q(\mathbb{C})$, then p = q. However, there are non-isomorphic non-commutative tori A_{ω} and A_{ρ} such that $A_{\omega} \otimes M_p(\mathbb{C})$ is isomorphic to $A_{\rho} \otimes M_p(\mathbb{C})$ for some integer p.

3.5 COROLLARY. Let l be a positive integer. Then $A_{\omega} \otimes M_l(\mathbb{C})$ has a non-trivial bundle structure unless \mathbb{Z}^n/S_{ω} is torsion-free.

Proof. Assume $A_{\omega} \otimes M_l(\mathbb{C})$ has the trivial bundle structure, i.e., $A_{\omega} \otimes M_l(\mathbb{C})$ is isomorphic to $C^*(F_{\rho}, \omega_1|_{F_{\rho}}) \otimes C(\widehat{S_{\omega}}) \otimes M_l(\mathbb{C}) \otimes M_k(\mathbb{C})$ where $M_k(\mathbb{C}) := M_{[E:E_{\rho}]}(\mathbb{C}) \otimes M_{\dim(\rho)}(\mathbb{C})$. If \mathbb{Z}^n/S_{ω} is not torsion-free, then $M_k(\mathbb{C})$ is non-trivial. So $A_{\omega} \otimes M_l(\mathbb{C})$ is isomorphic to $A \otimes M_{kl}(\mathbb{C})$ where A is isomorphic to $C^*(F_{\rho}, \omega_1|_{F_{\rho}}) \otimes C(\widehat{S_{\omega}})$. This contradicts Theorem 3.4 if \mathbb{Z}^n/S_{ω} is not torsion-free.

Therefore, $A_{\omega} \otimes M_l(\mathbb{C})$ has a non-trivial bundle structure unless \mathbb{Z}^n/S_{ω} is torsion-free.

We have obtained that $A_{\omega} \otimes M_l(\mathbb{C})$ has the trivial bundle structure if and only if \mathbb{Z}^n/S_{ω} is torsion-free.

References

- L. Baggett and A. Kleppner, Multiplier representations of abelian groups, J. Funct. Anal. 14 (1973), 299–324.
- 2. M.D. Brabanter, The classification of rational rotation C^* -algebras, Arch. Math. **43** (1984), 79–83.
- 3. A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.
- 4. R.S. Doran and J.M.G. Fell, Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, Academic Press, San Diego, 1988.
- 5. S. Echterhoff and J.M. Rosenberg, Fine structure of the Mackey machine for actions of abelian groups with constant Mackey obstruction, Pacific J. Math. (to appear).
- 6. G.A. Elliott, On the K-theory of the C*-algebra generated by a projective representation of a torsion-free discrete abelian group, Operator Algebras and Group Representations, vol. 1, Pitman, London, 1984, pp. 157–184.
- P. Green, The local structure of twisted covariance algebras, Acta. Math. 140 (1978), 191–250.
- 8. A. Kleppner, Multipliers on abelian groups, Math. Ann. 158 (1965), 11–34.
- 9. _____, Non type I multiplier representations of abelian groups, unpublished.
- 10. R.Y. Lee, On the C^* -algebras of operator fields, Indiana Univ. Math. J. **25** (1976), 303–314.
- 11. D. Poguntke, Simple quotients of group C*-algebras for two step nilpotent groups and connected Lie groups, Ann. Scient. Ec. Norm. Sup. 16 (1983), 151–172.
- 12. _____, The structure of twisted convolution C*-algebras on abelian groups, J. Operator Theory **38** (1997), 3–18.

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY TAEJON 305-764, KOREA

 $E\text{-}mail: \verb| dhboo@math.chungnam.ac.kr|| \& wgpark@math.chungnam.ac.kr||}$