• Title/Summary/Keyword: topological mixing

Search Result 10, Processing Time 0.021 seconds

TOPOLOGICAL ERGODIC SHADOWING AND TOPOLOGICAL PSEUDO-ORBITAL SPECIFICATION OF IFS ON UNIFORM SPACES

  • Thiyam Thadoi Devi;Khundrakpam Binod Mangang;Lalhmangaihzuala
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.929-942
    • /
    • 2023
  • In this paper, we discuss topological ergodic shadowing property and topological pseudo-orbital specification property of iterated function systems(IFS) on uniform spaces. We show that an IFS on a sequentially compact uniform space with topological ergodic shadowing property has topological shadowing property. We define the notion of topological pseudo-orbital specification property and investigate its relation to topological ergodic shadowing property. We find that a topologically mixing IFS on a compact and sequentially compact uniform space with topological shadowing property has topological pseudo-orbital specification property and thus has topological ergodic shadowing property.

TOPOLOGICAL COMPLEXITY OF SEMIGROUP ACTIONS

  • Yan, Xinhua;He, Lianfa
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.221-228
    • /
    • 2008
  • In this paper, we study the complexity of semigroup actions using complexity functions of open covers. The main results are as follows: (1) A dynamical system is equicontinuous if and only if any open cover has bounded complexity; (2) Weak-mixing implies scattering; (3) We get a criterion for the scattering property.

On Some Changes in Polymer Blend Topological and Molecular Structures Resulted from Processing

  • Jurkowski, B.;Jurkowska, B.;Nah, C.
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.234-243
    • /
    • 2002
  • A general scheme of a rubber structure is proposed. Using the thermomechanical method(TMA), some changes in the molecular and topological structures for uncured and cured, and unfilled and filled rubbers during processing are shown. In our investigations as region it is understood a complex structure, which is expressed at the thermomechanical curve(TMC) as a zone differed from others in thermal expansion properties. This zone is between the noticed temperatures of relaxation transitions, usually on the level like those determined by DMTA at 1Hz. These regions, which shares, are not stable, and differ in molecular-weight distribution(MWD) of chain fragments between the junctions. Differences in dynamics of the formation of the molecular and topological structures of a vulcanizate are dependent on the rubber formulation, mixing technology and curing time. Some of characteristics of these regions correlate with mechanical properties of vulcanizates what is shown for NR rubbers containing ENR or CPE as a polymeric additive. It is well known that the state of order influences diffusivity of low-molecular substances into the polymer matrix. Because of this, the two topological amorphous regions should influence the distribution of the ingredients and resulting in rubber compounds' heterogeneity, and related properties of cured rubber. Investigation of this problem is expected to be, in the future, one of the essential factors in determining further improvement of polymeric materials properties by compounding with additives and in reprocessing of rubber scrap.

Topological Analysis on the Modulus and Network Structure of Miscible Polymer Blends

  • 손정모;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.169-180
    • /
    • 1995
  • A topological theory is introduced to extend Tsenoglou's theory to polymer blends having temporary and permanent networks composed of multicomponent polymers which have miscible and flexible chains. The topological theory may estimate the values of free elastic energy, the molecular weight between entanglements, and the equilibrium shear moduli, and it may establish more correctly the topological relations among these physical quantities. Through such introduction of the topological theory, there can be topologically analyzed the mixing law for the rubbery plateau modulus of a fluid polymer blend, and there can be considered the topological relationship to the equilibrium modulus of an interpenetrating polymer network containing trapped entanglements and dangling segments. The theoretically predictive values are compared and show good agreement with the experimental data for several miscible polymer blends.

RELATIVE SEQUENCE ENTROPY PAIRS FOR A MEASURE AND RELATIVE TOPOLOGICAL KRONECKER FACTOR

  • AHN YOUNG-HO;LEE JUNGSEOB;PARK KYEWON KOH
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.857-869
    • /
    • 2005
  • Let $(X,\;B,\;{\mu},\;T)$ be a dynamical system and (Y, A, v, S) be a factor. We investigate the relative sequence entropy of a partition of X via the maximal compact extension of (Y, A, v, S). We define relative sequence entropy pairs and using them, we find the relative topological ${\mu}-Kronecker$ factor over (Y, v) which is the maximal topological factor having relative discrete spectrum over (Y, v). We also describe the topological Kronecker factor which is the maximal factor having discrete spectrum for any invariant measure.

The Fuel Spray Structure of High Pressure Gasoline Injector in a Constant Volume Chamber (정적챔버내의 고압 가솔린 인젝터의 연료분무구조)

  • 귄의용;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.10-17
    • /
    • 2000
  • This work presents an investigation of aerodynamic characteristics of fuel spray injected from a high pressure hollow cone swirl injector into a constant volume chamber. Laser tomography visualization was used to interrogate the fuel and air mixing characteristics and the effect of chamber pressure and temperature increase was analyzed, Preliminary results on spray development showed that mixing effect tends to increase with the increase of injection pressure and chamber gas pressure yielding a decrease of spray penetration and an attenuation of well-defined vortex structure. Topological analysis of the spray structure has been performed to initiate the understanding of mixing and vaporization process. For the present experimental conditions fuel injection pressure and chamber gas pressure appear as the dominant factors which govern the transient mixing characteristics. Moreover spray atmixation characteristics are improved by increasing chamber gas temperature.

  • PDF

POSITIVE EXPANSIVITY, CHAIN TRANSITIVITY, RIGIDITY, AND SPECIFICATION ON GENERAL TOPOLOGICAL SPACES

  • Devi, Thiyam Thadoi;Mangang, Khundrakpam Binod
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.319-343
    • /
    • 2022
  • We discuss the notions of positive expansivity, chain transitivity, uniform rigidity, chain mixing, weak specification, and pseudo orbital specification in terms of finite open covers for Hausdorff topological spaces and entourages for uniform spaces. We show that the two definitions for each notion are equivalent in compact Hausdorff spaces and further they are equivalent to their standard definitions in compact metric spaces. We show that a homeomorphism on a Hausdorff uniform space has uniform h-shadowing if and only if it has uniform shadowing and its inverse is uniformly equicontinuous. We also show that a Hausdorff positively expansive system with a Hausdorff shadowing property has Hausdorff h-shadowing.

ON HIGHER ORDER IRREGULAR SETS

  • Li, Jinjun;Wu, Min
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.87-99
    • /
    • 2017
  • To indicate the statistical complexity of dynamical systems, we introduce the notions of higher order irregular set and higher order maximal Birkhoff average oscillation in this paper. We prove that, in the setting of topologically mixing Markov chain, the set consisting of those points having maximal k-order Birkhoff average oscillation for all positive integers k is as large as the whole space from the topological point of view. As applications, we discuss the corresponding results on a repeller.

Analysis of spatial mixing characteristics of water quality at the confluence using artificial intelligence (인공지능을 활용한 합류부에서 수질의 공간혼합 특성 분석)

  • Lee, Seo Gyeong;Kim, Dongsu;Kim, Kyungdong;Kim, Young Do;Lyu, Siwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.482-482
    • /
    • 2022
  • 하천의 합류부에서는 수질이 다른 유체가 혼합하여 합류 전과 다른 특성을 보인다. 하천의 합류부에서 수질을 효율적으로 관리하기 위해서는 수질의 공간적인 혼합 특성을 규명하는 것이 중요하다. 합류부에서 수질의 공간적인 혼합 특성을 분석하기 위해 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기 조직화 지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하였다. 세 가지 기법을 비교하여 어떤 알고리즘이 합류부의 수질 변화 특성을 더 뚜렷하게 나타내는지 분석하였다. 수질 변화 비교 인자들은 pH, chlorophyll, DO, Turbidity 등이 있고, 수질 인자들은 YSI를 활용해 측정하였다. 자료의 측정 지역은 낙동강과 황강이 합류하는 지역이며, 보트에 YSI 장비를 부착하고 횡단하여 측정하였다. 측정한 데이터를 R 프로그램을 통해 세 가지 기법을 적용시켜 수질 변화 비교를 분석한다. 토폴로지 데이터 분석(topological data analysis, TDA)은 거대하고 복잡한 데이터로부터 유의미한 정보를 추출하는 데 사용하고, 자기조직화지도(Self-Organizing Map, SOM) 기법은 차원 축소와 군집화를 동시에 수행한다. k-평균 알고리즘(K-means clustering algorithm) 기법은 주어진 데이터를 k개의 클러스터로 묶는 머신러닝 비지도학습에 속하는 알고리즘이다. 세 가지 방법들의 주목적은 클러스터링이다. 클러스터 분석(Cluster analysis)이란 주어진 데이터들의 특성을 고려해 동일한 성격을 가진 여러 개의 그룹으로 대상을 분류하는 데이터 마이닝의 한 방법이다. 군집화 방법들인 TDA, SOM, K-means를 이용해 합류 지역의 수질 특성들을 클러스터링하여 수질 패턴들을 분석해 하천 수질 오염을 방지할 수 있을 것이다. 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기조직화지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하여 합류부에서의 수질 특성을 비교하며 어떤 기법이 합류의 특성을 더욱 뚜렷하게 나타내는지 규명했다. 합류의 특성을 군집화 방법을 이용해 알게 된다면, 합류부의 수질 변화 패턴을 다른 합류 지역에서도 적용할 수 있을 것으로 기대된다.

  • PDF