1 |
F. Blanchard, E. Glasner, and E. Host, A variation on the variational principle and applications to entropy pairs, Ergodic Theory Dynam. Systems 17 (1997), 29-43
DOI
ScienceOn
|
2 |
F. Blanchard and Y. Lacroix, Zero entropy factors of topological flows, Proc. Amer. Math. Soc. 119 (1993), no. 2, 985-992
|
3 |
E. Glasner, Ergodic theory via joinings, Math. Surverys Monogr. 101 (2003)
|
4 |
T. Goodman Topological sequence entropy, Proc. London Math. Soc. 29 (1974), no. 3, 331-350
|
5 |
W. Huang, S. Li, S. Shao, and X. Ye, Null systems and sequence entropy pairs, Ergodic Theory Dynam. Systems 23 (2003), no. 3, 1505-1523
DOI
ScienceOn
|
6 |
M. Lemanczyk and A. Siemaszko, A note on the existence of a largest topological factors with zero entropy, Proc. Amer. Math. Soc. 129 (2001), 475-485
DOI
ScienceOn
|
7 |
K. K. Park and A. Siemaszko, Relative topological Pinsker factors and entropy pairs, Monatsh. Math. 134 (2001), 67-79
DOI
ScienceOn
|
8 |
E. Glasner, A simple characterization of the set of -entropy pairs and applica- tion, Israel J. Math. 102 (1997), 13-27
DOI
|
9 |
P. Hulse, Sequence entropy relative to an invariant -algebra, J. London Math Soc. 33 (1986), no. 2, 59-72
DOI
|
10 |
W. Huang, A. Maass, and X. Ye, Sequence entropy pairs for a measure, Ann. Inst. Fourier, to appear
|