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ON HIGHER ORDER IRREGULAR SETS

Jinjun Li and Min Wu

Abstract. To indicate the statistical complexity of dynamical systems,
we introduce the notions of higher order irregular set and higher order
maximal Birkhoff average oscillation in this paper. We prove that, in the
setting of topologically mixing Markov chain, the set consisting of those
points having maximal k-order Birkhoff average oscillation for all positive
integers k is as large as the whole space from the topological point of view.
As applications, we discuss the corresponding results on a repeller.

1. Introduction and statement of results

Let σ be the shift map on the space of one-side sequence Σ = {1, 2, . . . , b}N,
where b ≥ 2 is an integer. We equip Σ with the distance

d(ω, ω′) = b−n, ω = (ωi)i∈N, ω
′ = (ω′

i)i∈N,

where n is the smallest integer such that ωn 6= ω′
n. It is well known that (Σ, d)

is a compact metric space.
Let ϕ : Σ → R be a continuous function. In multifractal analysis one is often

interested in the “size” of the following level sets:

Σϕ(α) =
{

ω ∈ Σ : lim
n→∞

Bϕ(ω, n) = α
}

, α ∈ R,

where

Bϕ(ω, n) =
1

n

n−1
∑

i=0

ϕ(σi(ω)).

However, the limit limn→∞Bϕ(ω, n) may not exist. The set consisting of those
points for which the above limit does not exist is called the irregular set (or
the set of divergence points) for ϕ and it is denoted by Σϕ. More precisely,

(1.1) Σϕ =

{

ω ∈ Σ : lim inf
n→∞

Bϕ(ω, n) < lim sup
n→∞

Bϕ(ω, n)

}

.

As a consequence of Birkhoff’s ergodic theorem, the irregular set has zero
measure with respect to any invariant measure. Therefore, at least from the
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point of view of ergodic theory, the set Σϕ can be discarded. Remarkably, from
the point of view of dimension theory the set Σϕ (and the similar sets in more
general setting, for example, in systems satisfying the specification property)
can be as large as the whole space, see [5, 7, 10, 11, 14, 18, 20, 24, 25, 27] and
references therein.

On the other hand, the set Σϕ can also be “large” from the topological
point of view. The notion of residual set is usually used to describe a set being
“large” in the topological sense. Recall that in a metric space X , a set R is
called residual if its complement is of the first category. Moreover, in a complete
metric space a set is residual if it contains a dense Gδ set, see [23]. We say that
a set is large from the topological point of view if it is residual. Barreira, Li
and Valls [3] proved that the irregular set Σϕ defined in (1.1) is either residual
or empty (in fact, they obtained the result in more general setting). To state
the result, we need to introduce some notation. Let

Lϕ =
{

α ∈ R : lim
n→∞

Bϕ(ω, n) = α for some ω ∈ Σ
}

.

We remark that the set Lϕ is a nonempty closed interval, see [9]. Finally,
for ω ∈ Σ, let Aϕ(ω) be the set of accumulation points of the sequence n →
Bϕ(ω, n). Following [8], a point ω ∈ Σ is said to have maximal Birkhoff average

oscillation if Aϕ(ω) = Lϕ. The following result shows that the set of points
having maximal Birkhoff average oscillation is large in the topological point of
view.

Theorem A (See [3, 8]). Let ϕ : Σ → R be a continuous function. The set

Σmax = {ω ∈ Σ : Aϕ(ω) = Lϕ}

is residual.

We recall that ϕ is said to be cohomologous to a constant if there exist a
bounded function ψ and a constant c such that

ϕ = ψ − ψ ◦ σ + c on Σ.

It is easy to check that Lϕ is a singleton and Σmax = Σ if ϕ is cohomologous
to a constant. Therefore, the irregular set Σϕ defined as in (1.1) is empty if ϕ
is cohomologous to a constant.

Clearly, it follows from Theorem A that the irregular set Σϕ is residual if it
is not empty since Σmax ⊂ Σϕ.

In fact, more and more results showed that irregular sets can be large from
the topological point of view. For example, Albeverio, Pratsiovytyi and Torbin
[1], Hyde et al. [12] and Olsen [21] proved that some kinds of irregular sets
associated with integer expansion are residual, and the result in [21] was gen-
eralized to iterated function systems by Baek and Olsen [2]. Very recently,
Madritsch [19] discussed the set of extremely non-normal points associated
with Markov partition from the topological point of view and his result gener-
alized the results in [12] and [21]. Moreover, Li and Wu [15] proved that the
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set of divergence points of self-similar measure with the open set condition is
either residual or empty. For two-sided topological Markov chains, Barreira,
Li and Valls [4] showed that the set of points for which the two-sided Birkhoff
averages of a continuous function diverge is residual and the set of points for
which the Birkhoff averages have a given set of accumulation points other than
a singleton is residual. Li and Wu [16, 17] proved that the irregular set and the
set consisting of all points having maximal Birkhoff average oscillation in the
system satisfying the specification property are residual if they are not empty.

However, the points in the irregular set are often regarded as “bad” ones in
ergodic theory. One often expect that the irregular set is as small as possible.
It is well known that given a divergent sequence, forming its Cesàro averages
may succeed in producing a convergent sequence. In the nice book [6], it has
been proposed that in order to study cases where the Birkhoff average does
not converge, one might consider the higher order Birkhoff averages. And it
is suggested that they might provide a stratification of dynamical systems or
orbits of such, indicating their statistical complexity. Therefore, it is interesting
to study the higher order Birkhoff average. In this paper we will prove that
the set consisting of those points for which the sets of accumulation points of
all higher order Birkhoff average equal to Lϕ is also residual. In particular,
we show that the higher order irregular set is still “large” in the topological
point of view. We would like to point out that our study is also inspired by a
paper by Olsen [22]. To state our result precisely, we need to introduce some
notation. Let

B(1)
ϕ (ω, n) = Bϕ(ω, n),

and for k ≥ 2, let

B(k)
ϕ (ω, n) =

∑n
j=1 B

(k−1)
ϕ (ω, j)

n
.

We call B
(k)
ϕ (ω, n) k-order Birkhoff average, and the set consisting of points ω

for which the limit limn→∞B
(k)
ϕ (ω, n) does not exist k-order irregular set. All

k-order irregular sets with k ≥ 2 are called higher order irregular sets.

We further consider more refined irregular sets. For ω ∈ Σ and k ∈ N let

A
(k)
ϕ (ω) be the set of accumulation points of the sequence n → B

(k)
ϕ (ω, n).

A point ω ∈ Σ is said to have maximal k-order Birkhoff average oscilla-

tion if A
(k)
ϕ (ω) = Lϕ. Roughly speaking, the points that have maximal k-

order Birkhoff average oscillation are the “worst” divergence points for k-order
Birkhoff average.

We can now state our main theorem which tells us that the set consisting of
those points having maximal k-order Birkhoff average oscillation for all k ∈ N

is still large from the topological point of view.

Theorem 1.1. Let ϕ : Σ → R be a continuous function. The set

Σ∞
ϕ,max =

{

ω ∈ Σ : A(k)
ϕ (ω) = Lϕ for all k ∈ N

}
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is residual.

Remark 1.1. Using the fact that 1
n

∑n
k=1 ak → a if an → a as n → ∞, we can

check that Σ∞
ϕ,max = Σ if ϕ is cohomologous to a constant.

We would like to remark that we constructed a desired dense Gδ set directly
in the proof of Theorem A. Unfortunately, the approach from [3] cannot be
applied in this higher order case. To prove Theorem 1.1, we will use an approach
inspired by the idea in [12].

Clearly, Theorem 1.1 strengthens Theorem A considerably and the following
result follows immediately from it.

Corollary 1.2. Let ϕ : Σ → R be a continuous function. The set

Σ∞
ϕ =

{

ω ∈ Σ : lim inf
n→∞

B(k)
ϕ (ω, n) < lim sup

n→∞
B(k)

ϕ (ω, n) for all k ∈ N

}

is residual if it is not empty.

Let us remark that the above results hold in more general setting. Given a
b× b matrix A = (aij) with entries in {0, 1}, let

ΣA =
{

(ω1ω2 · · · ) ∈ Σ : aωnωn+1
= 1 for n ∈ N

}

.

Clearly, σ(ΣA) ⊂ ΣA. The restriction σ|ΣA : ΣA → ΣA is called the (one-sided)
topological Markov chain or subshift of finite type with transition matrix A.
We recall that σ : ΣA → ΣA is topologically mixing if and only if some power
of A has only positive entries.

Theorem 1.1 can be generalized to the case of topologically mixing topolog-
ical Markov chain.

Theorem 1.3. Let σ : ΣA → ΣA be a topologically mixing topological Markov

chain and let ϕ : ΣA → R be a continuous function. The set

Σ∞
A,ϕ,max =

{

ω ∈ ΣA : A(k)
ϕ (ω) = Lϕ for all k ∈ N

}

is residual.

Note that, unlike the case of full shift, the concatenation of two admissible
words is not necessary admissible in the topological Markov chain case. How-
ever, for topologically mixing topological Markov chain, it is well known that
there exists k0 ∈ N such that for any admissible words ω1 · · ·ωn and ω′

1 · · ·ω
′
n

there exists a word τ1 · · · τk0
such that the concatenated word

ω1 · · ·ωnτ1 · · · τk0
ω′
1 · · ·ω

′
n

is admissible. Therefore, with minor modifications of the proof of Theorem 1.1,
we can obtain Theorem 1.3. To avoid tedious notation, we only present the
proof for the full shift case.

Also, Theorem 1.3 implies the following result.
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Corollary 1.4. Let σ : ΣA → ΣA be a topologically mixing topological Markov

chain and let ϕ : ΣA → R be a continuous function. The set

Σ∞
A,ϕ =

{

ω ∈ ΣA : lim inf
n→∞

B(k)
ϕ (ω, n) < lim sup

n→∞
B(k)

ϕ (ω, n) for all k ∈ N

}

is residual if it is not empty.

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Due to Remark 1.1, we
can assume that ϕ is not cohomologous to a constant. We separate the proof
into a sequence of lemmas.

First we introduce some notation. For n ∈ N, let Σn = {1, . . . , b}n and
Σ∗ =

⋃

n∈N
Σn, that is, Σn is the family of all words of length n and Σ∗ is

the family of all finite words. When ω = (ω1ω2 · · · ) ∈ Σ and m ∈ N or when
ω = (ω1 · · ·ωn) ∈ Σn and m ∈ N with m ≤ n, we write

ω|m = ω1 · · ·ωm.

Given words ω = (ω1 · · ·ωn) ∈ Σn and ω′ = (ω′
1 · · ·ω

′
m) ∈ Σm, let

ωω′ = ω1 · · ·ωnω
′
1 · · ·ω

′
m

be the concatenation of ω and ω′. Moreover, given W ⊂ Σ∗ and ω ∈ Σ∗, we
write

ωW = {ωη : η ∈ W}

and

W∞ = {η1η2 · · · : ηi ∈W, i ∈ N}.

Let D be the set of rational numbers in the interval Lϕ, i.e., D = Q ∩ Lϕ.
We claim that D 6= ∅. In fact, since ϕ is not cohomologous to a constant it
follows from Lemma 1.6 in [27] that Bϕ(ω, n) does not converge uniformly (or
even pointwise) to a constant. On the other hand, it is not difficult to check

that Lϕ = ∪η∈ΣA
(1)
ϕ (η) since for each a ∈ A

(1)
ϕ (η) there exists ω′ ∈ Σ such that

limn→∞B
(1)
ϕ (ω′, n) = a, see Lemma 6.5 in [11]. Therefore, |Lϕ| ≥ 2, where

|A| denotes the cardinality of the set A. Note that Lϕ is a nonempty closed
interval, we have D 6= ∅.

Inspired by the idea in [12], we define the property P as follows. Let g1(x) =
2x and gm(x) = g1(gm−1(x)) for m ≥ 2. We say that a sequence {xn}n of real
numbers has property P if for all q ∈ D,m ∈ N, i ∈ N and ε > 0, there exists
j ∈ N satisfying:

(i) j ≥ i;

(ii) j‖ϕ‖
2j < ε, where ‖ϕ‖ = maxω∈Σ |ϕ(ω)|;

(iii) if j < n < gm(2j), then |xn − q| < ε.

Write

E =
{

ω ∈ Σ : (B(1)
ϕ (ω, n))∞n=1 has property P

}

.
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Lemma 2.1. The set E is residual.

Proof. For fixed h,m, i ∈ N and q ∈ D, we define property Ph,m,q,i as follows.
We say that a sequence (xn)n has property Ph,m,q,i if for every ε < 1/h, there
exists j ∈ N satisfying:

(i) j ≥ i;

(ii) j‖ϕ‖
2j < ε;

(iii) if j < n < gm(2j), then |xn − q| < ε.

Let

Eh,m,q,i =
{

ω ∈ Σ : (B(1)
ϕ (ω, n))∞n=1 has property Ph,m,q,i

}

.

It is not difficult to check that

E =
⋂

h∈N

⋂

m∈N

⋂

q∈D

⋂

i∈N

Eh,m,q,i.

Further, we claim that

(2.1) Eh,m+1,q,i+1 ⊂ Eh,m,q,i.

In fact, let ω ∈ Eh,m+1,q,i+1, then there exists j ∈ N such that j ≥ i +

1, (j ‖ϕ‖)/2j < ε, and if j < n < gm+1(2
j), then |B

(1)
ϕ (ω, n) − q| < ε. On the

other hand, it is easy to check that j ≥ i, (j ‖ϕ‖)/2j < ε, and if j < n < gm(2j),

then |B
(1)
ϕ (ω, n)− q| < ε, that is, ω ∈ Eh,m,q,i.

For n ∈ N, we introduce the numbers

Varn(ϕ) = sup {|ϕ(ω)− ϕ(ω′)| : ω, ω′ ∈ Σ, ω|n = ω′|n}

and

Vn(ϕ) =

n
∑

j=1

Varj(ϕ).

Let us remark that Vn(ϕ)/n → 0 when n → ∞ since ϕ is continuous on the
compact metric space Σ. Therefore, for ε < 1/h there exists N ∈ N such that

(2.2)
Vn(ϕ)

n
<
ε

2
for any n > N .

It follows from (2.1) that

E =
⋂

h∈N

⋂

m>N

⋂

q∈D

⋂

i>N

Eh,m,q,i.

To complete the proof, it is sufficient to show that Eh,m,q,i is open and dense
in Σ for m > N and i > N .

First, we show that Eh,m,q,i is open for m > N and i > N . Now let
ω ∈ Eh,m,q,i. For ε < 1/h, it follows from the definition of Eh,m,q,i that there
exists j ∈ N such that j ≥ i, (j‖ϕ‖)/2j < ε/2 and if j < n < gm(2j), then

|B
(1)
ϕ (ω, n)− q| < ε/2.
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Choose δ = 1/kgm(2j) (note that m and j are fixed). Let B(ω, δ) denote the
ball centered at ω with radius δ. Then, for any ω′ ∈ B(ω, δ) and j < n < gm(2j)
we have ω|n = ω′|n. Therefore,

∣

∣

∣
B(1)

ϕ (ω′, n)− q
∣

∣

∣
≤

∣

∣

∣
B(1)

ϕ (ω′, n)−B(1)
ϕ (ω, n)

∣

∣

∣
+
∣

∣

∣
B(1)

ϕ (ω, n)− q
∣

∣

∣

≤
Vn(ϕ)

n
+
ε

2

<
ε

2
+
ε

2
(by (2.2) and the fact that i > N)

< ε.

This implies that B(ω, δ) ⊂ Eh,m,q,i, and therefore Eh,m,q,i is open for m > N

and i > N .
Next we show that Eh,m,q,i is dense in Σ. Let ω ∈ Σ and r > 0. We must

find ω′ ∈ B(ω, r) ∩ Eh,m,q,i.
For each α ∈ R, n ∈ N and ε > 0, write

G(α, n, ε) =
{

ω|n : ω ∈ Σ and |B(1)
ϕ (ω, n)− α| < ε

}

.

Choose t ∈ N such that 1/kt < r. For ε < 1/h, choose a positive integer
n0 ≥ 2 such that

(2.3)
Vn0

(ϕ)

n0
<
ε

4
.

Then, for q ∈ D let

(2.4) ω′ ∈ ω1ω2 · · ·ωtG(q, n0, ε/4)
∞.

Clearly, ω′ ∈ B(ω, r) since ω′|t = ω|t.
Next, choose j ∈ N such that (j ‖ϕ‖)/2j < ε, and

(2.5) j ≥ max

{

i, t+ n0,
8t ‖ϕ‖

ε
,
8n0 ‖ϕ‖

ε

}

.

Fix a positive integer n with j < n < gm(2j). There exist ℓ, p ∈ N with
0 ≤ p < n0 such that n = t+ ℓn0 + p. Observe that |q| ≤ ‖ϕ‖ since q ∈ D, we
have
∣

∣

∣

∣

∣

n−1
∑

e=0

ϕ(σe(ω′))− nq

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

t−1
∑

e=0

ϕ(σe(ω′))− tq

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

t+ℓn0−1
∑

e=t

ϕ(σe(ω′))− ℓn0q

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n−1
∑

e=t+ℓn0

ϕ(σe(ω′))− pq

∣

∣

∣

∣

∣

≤ 2t ‖ϕ‖+

ℓ−1
∑

s=0

∣

∣

∣

∣

∣

n0−1
∑

v=0

ϕ(σv(σt+sn0 (ω′))− n0q

∣

∣

∣

∣

∣

+ 2p ‖ϕ‖ .
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By (2.4) and the definition of the set G(q, n0, ε/4), one can choose sequences
ω0, . . . , ωℓ−1 ∈ Σ such that

(2.6) σt+sn0 (ω′)|n0
= ωs|n0

and

(2.7)
∣

∣

∣
B(1)

ϕ (ωs, n0)− q
∣

∣

∣
<
ε

4
for s = 0, . . . , ℓ− 1.

It follows from (2.6) and (2.7) that
∣

∣

∣

∣

∣

n0−1
∑

v=0

ϕ(σv(σt+sn0 (ω′))− n0q

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

n0−1
∑

v=0

ϕ(σv(σt+sn0 (ω′))−

n0−1
∑

v=0

ϕ(σv(ωs))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n0−1
∑

v=0

ϕ(σv(ωs))− n0q

∣

∣

∣

∣

∣

≤ Vn0
(ϕ) +

n0ε

4
.

Hence,
∣

∣

∣

∣

∣

n−1
∑

e=0

ϕ(σe(ω′))− nq

∣

∣

∣

∣

∣

≤ 2t ‖ϕ‖ + ℓVn0
(ϕ) +

n0ℓε

4
+ 2p ‖ϕ‖ .

Finally, it follows from (2.3) and (2.5) that
∣

∣

∣
B(1)

ϕ (ω′, n)− q
∣

∣

∣
≤

2t ‖ϕ‖

n
+
ℓVn0

(ϕ)

n
+
n0ℓε

4n
+

2p ‖ϕ‖

n

≤
2t ‖ϕ‖

j
+
Vn0

(ϕ)

n0
+
n0ℓε

4n
+

2p ‖ϕ‖

j

<
2t ‖ϕ‖

j
+
Vn0

(ϕ)

n0
+
ε

4
+

2n0 ‖ϕ‖

j

<
ε

4
+
ε

4
+
ε

4
+
ε

4
(by (2.3) and (2.5))

< ε.

This implies that ω′ ∈ Eh,m,q,i. The proof of Lemma 2.1 is completed. �

Lemma 2.2. For ω ∈ Σ and k ∈ N, if the sequence (B
(k)
ϕ (ω, n))∞n=1 has

property P , then the sequence (B
(k+1)
ϕ (ω, n))∞n=1 also has property P .

Proof. Fix ε > 0, q ∈ D, i ∈ N and m ∈ N. Since the sequence (B
(k)
ϕ (ω, n))∞n=1

has property P , there exists j′ ∈ N such that j′ ≥ i, (j′ ‖ϕ‖)/2j
′

< ε/3, and if

j′ < n < gm+1(2
j′), then |B

(k)
ϕ (ω, n)− q| < ε/3.

Let j = 2j
′

. It is easy to check that j ≥ i, and

j ‖ϕ‖

2j
=

2j
′

‖ϕ‖

22j
′

<
j′ ‖ϕ‖

2j′
< ε.
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Moreover, for any j < n < gm(2j), since |B
(k)
ϕ (ω, n)| ≤ ‖ϕ‖ for any k ∈ N and

|q| ≤ ‖ϕ‖ for any q ∈ D, we have
∣

∣

∣
B(k+1)

ϕ (ω, n)− q
∣

∣

∣

=

∣

∣

∣

∣

∣

B
(k)
ϕ (ω, 1) +B

(k)
ϕ (ω, 2) + · · ·+B

(k)
ϕ (ω, n)

n
− q

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

B
(k)
ϕ (ω, 1) + · · ·+B

(k)
ϕ (ω, j′)

n

+
B

(k)
ϕ (ω, j′ + 1) + · · ·+B

(k)
ϕ (ω, n)− (n− j′)q

n
−
j′q

n

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

B
(k)
ϕ (ω, 1) + · · ·+B

(k)
ϕ (ω, j′)

n

∣

∣

∣

∣

∣

+

∑n
v=j′+1

∣

∣

∣
B

(k)
ϕ (ω, v)− q

∣

∣

∣

n
+

∣

∣

∣

∣

j′q

n

∣

∣

∣

∣

≤
j′ ‖ϕ‖

n
+
n− j′

n
·
ε

3
+
j′ ‖ϕ‖

n

≤
j′ ‖ϕ‖

2j′
+
ε

3
+
j′ ‖ϕ‖

2j′

< ε.

The proof of Lemma 2.2 is completed. �

Lemma 2.3. The set E is a subset of Σ∞
ϕ,max.

Proof. Let ω ∈ E, then it follows from Lemma 2.2 that (B
(k)
ϕ (ω, n))∞n=1 has

property P for all k ∈ N. In order to prove ω ∈ Σ∞
ϕ,max, we must show that

A
(k)
ϕ (ω) = Lϕ for all k ∈ N.

First, we show that A
(k)
ϕ (ω) ⊂ Lϕ for all k ∈ N. Since Lϕ = ∪η∈ΣA

(1)
ϕ (η)

we have A
(1)
ϕ (ω) ⊂ Lϕ. On the other hand, it is not difficult to check that

A
(k)
ϕ (ω) ⊂ A

(1)
ϕ (ω) for all k ≥ 2, see [13].

Next, we show that Lϕ ⊂ A
(k)
ϕ (ω) for all k ∈ N. Let p ∈ Lϕ. Fix ℓ ∈ N and

q ∈ D such that |p − q| < 1/ℓ. Since ω ∈ E, it follows from Lemma 2.2 that

(B
(k)
ϕ (ω, n))∞n=1 has property P . In particular, there exists j ∈ N with j ≥ ℓ

such that if j < n < gm(2j), then |B
(k)
ϕ (ω, n) − q| < 1/ℓ. Choose any integer

nℓ ∈ (j, gm(2j)) then |B
(k)
ϕ (ω, nℓ) − q| < 1/ℓ. Therefore, we get a sequence of

integers (nℓ)ℓ with nℓ > ℓ such that

|B(k)
ϕ (ω, nℓ)− p| ≤ |B(k)

ϕ (ω, nℓ)− q|+ |q − p| ≤ 2/ℓ.

Moreover, since nℓ > ℓ we can extract an increasing subsequence (nℓu) of (nℓ)

such that B
(k)
ϕ (ω, nℓu) → p when u → ∞. This implies that p ∈ A

(k)
ϕ (ω) and

therefore Lϕ ⊂ A
(k)
ϕ (ω) for all k ∈ N. The proof of Lemma 2.3 is completed. �
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Finally, Theorem 1.1 follows from Lemmas 2.1, 2.2 and 2.3 immediately.

3. Applications

In this section we give applications of Theorem 1.3 and Corollary 1.4. More
precisely, we obtain corresponding results for the Birkhoff averages of a contin-
uous function on a repeller.

Let f : M → M be a C1 map on a smooth manifold and let J ⊂ M be
a compact f -invariant set. We say that f is expanding on J and that J is a
repeller for f if there exist c > 0 and τ > 1 such that

‖dxf
nv‖ ≥ cτn ‖v‖

for x ∈ J , v ∈ TxM and n ∈ N. Given a continuous function ϕ : J → R, we
consider the higher order irregular set

J∞
ϕ =

{

x ∈ J : lim inf
n→∞

B(k)
ϕ (x, n) < lim sup

n→∞
B(k)

ϕ (x, n) for all k ∈ N

}

,

where B
(k)
ϕ (x, n) are defined inductively by

B(k)
ϕ (x, n) =

1

n

n
∑

j=1

B(k−1)
ϕ (x, j) with B(1)

ϕ (x, n) =
1

n

n−1
∑

i=0

ϕ(f i(x)).

Also, let

Rϕ =
{

α ∈ R : lim
n→∞

B(1)
ϕ (x, n) = α for some x ∈ J

}

.

Moreover, let

J∞
ϕ,max =

{

x ∈ J : A(k)
ϕ (x) = Rϕ for all k ∈ N

}

,

where A
(k)
ϕ (x) is the set of accumulation points of the sequence n 7→ B

(k)
ϕ (x, n).

The following is a version of Theorem 1.3 for the Birkhoff average of a
continuous function on a repeller. The proof is similar to that in [3]. However,
we present the details for the reader’s convenience.

Theorem 3.1. Let J be a repeller for a topologically mixing C1 map and let

ϕ : J → R be a continuous function. The set J∞
ϕ,max is residual.

Proof. Recall that a collection of closed sets R1, . . . , Rk ⊂ J is called a Markov
partition of J (with respect to f) if:

(1) J =
⋃k

i=1Ri and Ri = intRi for each i;
(2) intRi ∩ intRj = ∅ whenever i 6= j;
(3) if int f(Ri) ∩ intRj 6= ∅, then f(Ri) ⊃ Rj .

We note that the interiors are computed with respect to the induced topology
on J . Any repeller J for a C1 map f has Markov partitions of arbitrary small
diameter (see for example [26]). Let A = (aij) be a b × b matrix with entries
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aij = 1 if int f(Ri) ∩ intRj 6= ∅ and aij = 0 otherwise. We obtain a coding
map π : ΣA → J for the repeller J letting

π(ω) =
⋂

n∈N

f−n+1Rωn
, ω = (ω1ω2 · · · ).

One can easily verify that π is continuous, onto and that π ◦ σ = f ◦ π. The
last identity implies that Rϕ = Lϕ◦π.

Now let

B =
⋃

n≥0

f−n

k
⋃

i=1

∂Ri,

where ∂Ri is the boundary of Ri. This is the set of points in J for which the

coding is not unique. Since f(C) ⊂ C, where C =
⋃k

i=1 ∂Ri, the sequence
f−nC is increasing and hence the set B is invariant, that is, (f |J)−1B = B.
We define

S = ΣA \ π−1B and J∗ = J \B.

Clearly, the map π : S → J∗ is bijective. Moreover, B is an Fσ set and since
π is continuous, S is a Gδ set. In addition, it follows from the f -invariance
of B that (f |J)−1J∗ = J∗ and hence (σ|ΣA)

−1S = S. That is to say, S is a
backward invariant set. It is not difficult to check that any nonempty backward
invariant set of a one-sided shift σ|ΣA is dense. Therefore, S is a dense Gδ set.

We note that ψ = ϕ ◦ π is a continuous function on ΣA. It follows from
Theorem 1.3 that there exists a dense Gδ set E ⊂ Σ∞

A,ϕ,max. To complete the

proof, it suffices to show that the set F = π(E ∩S) ⊂ J∗ satisfies the following
properties:

(1) F ⊂ J∞
ϕ,max;

(2) F is dense in J ;
(3) F is a Gδ set.

It follows from the identity π ◦ σ = f ◦ π that

F ⊂ π(E) ⊂ π(Σ∞
A,ϕ,max) = J∞

ϕ,max.

Moreover, E ∩ S is a dense Gδ set since both E and S are dense Gδ sets. In
particular,

J = π(ΣA) = π(E ∩ S) ⊂ π(E ∩ S) = F

and F is dense in J . For the last property, we observe that

J \ F = (B ∪ J∗) \ F = B ∪ (J∗ \ F ) (since B ∩ F = ∅)

= B ∪
(

π(S) \ π(E ∩ S)
)

= B ∪ π
(

S \ (E ∩ S)
)

(since π is bijective on S)

= π(ΣA \ S) ∪ π
(

S \ (E ∩ S)
)

= π
(

(ΣA \ S) ∪ (S \ (E ∩ S))
)

= π
(

ΣA \ (E ∩ S)
)

.
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Finally, ΣA \ (E ∩ S) is an Fσ set (since E ∩ S is a Gδ set) and writing ΣA \
(E ∩ S) =

⋃

i Fi as a countable union of closed sets Fi ⊂ ΣA, we obtain

J \ F = π
(

ΣA \ (E ∩ S)
)

=
⋃

i

π(Fi),

where π(Fi) is a closed set (since π is continuous and J is compact). This
shows that F is a Gδ set and the proof of the theorem is completed. �

Also, we can obtain a version of Corollary 1.4 for the Birkhoff average of a
continuous function on a repeller.

Corollary 3.2. Let J be a repeller for a topologically mixing C1 map and let

ϕ : J → R be a continuous function. The set J∞
ϕ is residual if it is nonempty.
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